Effect of Nano Silica Particles on Impact Resistance and Durability of Concrete Containing Coal Fly Ash.

Nanomaterials (Basel)

Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.

Published: May 2021

In this study, the effect of adding nano-silica (NS) particles on the properties of concrete containing coal fly ash were explored, including the mechanical properties, impact resistance, chloride penetration resistance, and freezing-thawing resistance. The NS particles were added into the concrete at 1%, 2%, 3%, 4%, and 5% of the binder weight. The behavior under an impact load was measured using a drop weight impact method, and the number of blows and impact energy difference was used to assess the impact resistance of the specimens. The durability of the concrete includes its chloride penetration and freezing-thawing resistance; these were calculated based on the chloride diffusion coefficient and relative dynamic elastic modulus (RDEM) of the samples after the freezing-thawing cycles, respectively. The experimental results showed that the addition of NS can considerably improve the mechanical properties of concrete, along with its freezing-thawing resistance and chloride penetration resistance. When NS particles were added at different replacement levels, the compressive, flexural, and splitting tensile strengths of the specimens were increased by 15.5%, 27.3%, and 19%, respectively, as compared with a control concrete. The addition of NS enhanced the impact resistance of the concrete, although the brittleness characteristics of the concrete did not change. When the content of the NS particles was 2%, the number of first crack impacts reached a maximum of 37, 23.3% higher compared with the control concrete. Simultaneously, the chloride penetration resistance and freezing-thawing resistance of the samples increased dramatically. The optimal level of cement replacement by NS in concrete for achieving the best impact resistance and durability was 2-3 wt%. It was found that when the percentage of the NS in the cement paste was excessively high, the improvement from adding NS to the properties of the concrete were reduced, and could even lead to negative impacts on the impact resistance and durability of the concrete.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156208PMC
http://dx.doi.org/10.3390/nano11051296DOI Listing

Publication Analysis

Top Keywords

impact resistance
24
chloride penetration
16
freezing-thawing resistance
16
resistance
13
resistance durability
12
concrete
12
durability concrete
12
properties concrete
12
penetration resistance
12
impact
9

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced ​​bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests.

View Article and Find Full Text PDF

Biophysical effects of croplands on land surface temperature.

Nat Commun

December 2024

Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA.

Converting natural vegetation to croplands alters the local land surface energy budget. Here, we use two decades of satellite data and a physics-based framework to analyse the biophysical mechanisms by which croplands influence daily mean land surface temperature (LST). Globally, 60% of croplands exhibit an annual warming effect, while 40% have a cooling effect compared to their surrounding natural ecosystems.

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!