Membrane-based water purification technologies contribute significantly to water settings, where it is imperative to use low-cost energy sources to make the process economically and technically competitive for large-scale applications. Donnan membrane processes (DMPs) are driven by a potential gradient across an ion exchange membrane and have an advantage over fouling in conventional pressure driven membrane technologies, which are gaining attention. DMP is a removal, recovery and recycling technology that is commonly used for separation, purification and the concentrating of metals in different water and waste streams. In this study, the principle and application of DMP for sustainable wastewater treatment and prospects of chemical remediation are reviewed and discussed. In addition, the separation of dissolved metal ions in wastewater settings without the use of pressure driven gradients or external energy supply membrane technologies is highlighted. Furthermore, DMP distinctive configurations and operational factors are explored and the prospects of integrating them into the wastewater treatment plants are recommended.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153574PMC
http://dx.doi.org/10.3390/membranes11050358DOI Listing

Publication Analysis

Top Keywords

donnan membrane
8
pressure driven
8
membrane technologies
8
wastewater treatment
8
membrane process
4
process selective
4
selective recovery
4
recovery removal
4
removal target
4
target metal
4

Similar Publications

Ultramicroporous Tröger's Base Framework Membranes With Ionized Sub-nanochannels for Efficient Acid/Alkali Recovery.

Adv Sci (Weinh)

January 2025

Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.

Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.

View Article and Find Full Text PDF

Mechanistic study of micropollutants rejection by nanofiltration of a natural water.

Environ Technol

December 2024

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France.

A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants.

View Article and Find Full Text PDF

Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.

View Article and Find Full Text PDF

Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.

View Article and Find Full Text PDF

Enhancing Ion Selectivity of Nanofiltration Membranes via Heterogeneous Charge Distribution.

Environ Sci Technol

December 2024

School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Nanofiltration technology holds significant potential for precisely separating monovalent and multivalent ions, such as lithium (Li) and magnesium (Mg) ions, during lithium extraction from salt lakes. This study bridges a crucial gap in understanding the impact of the membrane spatial charge distribution on ion-selective separation. We developed two types of mixed-charge membranes with similar pore sizes but distinct longitudinal and horizontal distributions of oppositely charged domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!