Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the preparation of [Ga]Ga-NOTA-sdAb at high activity, degradation of the tracers was observed, impacting the radiochemical purity (RCP). Increasing starting activities in radiolabelings is often paired with increased degradation of the tracer due to the formation of free radical species, a process known as radiolysis. Radical scavengers and antioxidants can act as radioprotectant due to their fast interaction with formed radicals and can therefore reduce the degree of radiolysis. This study aims to optimize a formulation to prevent radiolysis during the labeling of NOTA derivatized single domain antibody (sdAbs) with Ga. Gentisic acid, ascorbic acid, ethanol and polyvinylpyrrolidone were tested individually or in combination to find an optimal mix able to prevent radiolysis without adversely influencing the radiochemical purity (RCP) or the functionality of the tracer. RCP and degree of radiolysis were assessed via thin layer chromatography and size exclusion chromatography for up to three hours after radiolabeling. Individually, the radioprotectants showed insufficient efficacy in reducing radiolysis when using high activities of Ga, while being limited in amount due to negative impact on radiolabeling of the tracer. A combination of 20% ethanol (VEtOH/VBuffer%) and 5 mg ascorbic acid proved successful in preventing radiolysis during labeling with starting activities up to 1-1.2 GBq of Ga, and is able to keep the tracer stable for up to at least 3 h after labeling at room temperature. The prevention of radiolysis by the combination of ethanol and ascorbic acid potentially allows radiolabeling compatibility of NOTA-sdAbs with all currently available Ge/Ga generators. Additionally, a design is proposed to allow the incorporation of the radioprotectant in an ongoing diagnostic kit development for Ga labeling of NOTA-sdAbs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151064 | PMC |
http://dx.doi.org/10.3390/ph14050448 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!