AI Article Synopsis

  • The BAG family of cochaperones in tomato includes ten genes with similar structures and high identity to known homologs in other species.
  • qPCR analysis revealed high expression of these genes in stems and flowers, and they respond differently to abiotic stressors and phytohormone treatments.
  • Transgenic tomatoes overexpressing specific BAG genes showed improved chlorophyll levels and photosynthetic performance while delaying leaf senescence under dark stress conditions.

Article Abstract

The Bcl-2-associated athanogene (BAG) family is a group of evolutionarily conserved cochaperones involved in diverse cellular functions. Here, ten putative genes were identified in tomato. and have the same gene structure and conserved domains, along with highly similar identity to their homologs in , , and . The qPCR data showed that and were highly expressed in stems and flowers. Moreover, both genes were differentially expressed under diverse abiotic stimuli, including cold stress, heat stress, salt treatment, and UV irradiation, and treatments with phytohormones, namely, ABA, SA, MeJA, and ETH. Subcellular localization showed that SlBAG2 and SlBAG5b were located in the cell membrane and nucleus. To elucidate the functions in leaf senescence of BAG2 and BAG5b, the full-length CDSs of and were cloned, and transgenic tomatoes were developed. Compared with WT plants, those overexpressing and had significantly increased chlorophyll contents, chlorophyll fluorescence parameters and photosynthetic rates but obviously decreased ROS levels, chlorophyll degradation and leaf senescence related gene expression under dark stress. Conclusively, overexpression and could improve the tolerance of tomato leaves to dark stress and delay leaf senescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151600PMC
http://dx.doi.org/10.3390/plants10050947DOI Listing

Publication Analysis

Top Keywords

leaf senescence
16
dark stress
8
characterization genes
4
genes function
4
function response
4
response dark-induced
4
leaf
4
dark-induced leaf
4
senescence
4
senescence bcl-2-associated
4

Similar Publications

Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.

View Article and Find Full Text PDF

Modified Atmosphere Packaging (MAP) is a conventional method used to prolong the shelf-life of fresh-cut vegetables, including lettuce. However, MAP-stored lettuce remains perishable, and its deterioration mechanism is not fully understood. Here, we utilized non-targeted LC-MS metabolomics to evaluate the effects of cutting and extended storage time on metabolite profiles of lettuce stored in MAP.

View Article and Find Full Text PDF

L-Cysteine Treatment Delays Leaf Senescence in Chinese Flowering Cabbage by Regulating ROS Metabolism and Stimulating Endogenous HS Production.

Foods

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

Leaf senescence is a major concern for postharvest leafy vegetables, as leaves are highly prone to yellowing and nutrient loss, resulting in reduced commercial value and limited shelf-life. This study aimed to investigate the effect of L-cysteine (L-cys) on postharvest Chinese flowering cabbage stored at 20 °C. The results showed that 0.

View Article and Find Full Text PDF

DNA Methylation Is Crucial for 1-Methylcyclopropene Delaying Postharvest Ripening and Senescence of Tomato Fruit.

Int J Mol Sci

December 2024

Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.

DNA methylation is an epigenetic modification process that can alter the functionality of a genome. It has been reported to be a key regulator of fruit ripening. In this study, the DNA methylation changes of CpG islands of ethylene signaling genes regulated by 1-methylcyclopropene (1-MCP) during ripening and senescence of tomato fruit were detected.

View Article and Find Full Text PDF

Assessing Vegetation Canopy Growth Variations in Northeast China.

Plants (Basel)

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.

Studying climate change's impact on vegetation canopy growth and senescence is significant for understanding and predicting vegetation dynamics. However, there is a lack of adequate research on canopy changes across the lifecycles of different vegetation types. Using GLASS LAI (leaf area index) data (2001-2020), we investigated canopy development (April-June), maturity (July-August), and senescence (September-October) rates in Northeast China, focusing on their responses to preseason climatic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!