Hamster Polyomavirus Research: Past, Present, and Future.

Viruses

Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.

Published: May 2021

Hamster polyomavirus (Mesocricetus auratus polyomavirus 1, HaPyV) was discovered as one of the first rodent polyomaviruses at the end of the 1960s in a colony of Syrian hamsters () affected by skin tumors. Natural HaPyV infections have been recorded in Syrian hamster colonies due to the occurrence of skin tumors and lymphomas. HaPyV infections of Syrian hamsters represent an important and pioneering tumor model. Experimental infections of Syrian hamsters of different colonies are still serving as model systems (e.g., mesothelioma). The observed phylogenetic relationship of HaPyV to murine polyomaviruses within the genus and the exclusive detection of other cricetid polyomaviruses, i.e., common vole (Microtus arvalis polyomavirus 1) and bank vole (Myodes glareolus polyomavirus 1) polyomaviruses, in the genus , must be considered with caution, as knowledge of rodent-associated polyomaviruses is still limited. The genome of HaPyV shows the typical organization of polyomaviruses with an early and a late transcriptional region. The early region encodes three tumor (T) antigens including a middle T antigen; the late region encodes three capsid proteins. The major capsid protein VP1 of HaPyV was established as a carrier for the generation of autologous, chimeric, and mosaic virus-like particles (VLPs) with a broad range of applications, e.g., for the production of epitope-specific antibodies. Autologous VLPs have been applied for entry and maturation studies of dendritic cells. The generation of chimeric and mosaic VLPs indicated the high flexibility of the VP1 carrier protein for the insertion of foreign sequences. The generation of pseudotype VLPs of original VP1 and VP2-foreign protein fusion can further enhance the applicability of this system. Future investigations should evaluate the evolutionary origin of HaPyV, monitor its occurrence in wildlife and Syrian hamster breeding, and prove its value for the generation of potential vaccine candidates and as a gene therapy vehicle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153644PMC
http://dx.doi.org/10.3390/v13050907DOI Listing

Publication Analysis

Top Keywords

syrian hamsters
12
hamster polyomavirus
8
skin tumors
8
hapyv infections
8
syrian hamster
8
infections syrian
8
polyomaviruses genus
8
region encodes
8
encodes three
8
chimeric mosaic
8

Similar Publications

Bacteriophage-derived dsRNA (bp-dsRNA), also known as Larifan, is a poly-functional and wide-spectrum antiviral medication with potent interferonogenic activity. In the lungs of golden Syrian hamsters infected with SARS-CoV-2, Larifan substantially reduces viral load and decreases infection-induced pathological lesion severity. Alveolar macrophages (AM) are key sentinel cells in the lung, which play an important role in antiviral innate immune responses and, at the same time, can trigger infection-associated hyper-inflammatory response.

View Article and Find Full Text PDF

Assessment of Favipiravir and Remdesivir in Combination for SARS-CoV-2 Infection in Syrian Golden Hamsters.

Viruses

November 2024

Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.

Favipiravir (FVP) and remdesivir (RDV) have demonstrable antiviral activity against SARS-CoV-2. Here, the efficacy of FVP, RDV, and FVP with RDV (FVP + RDV) in combination was assessed in Syrian golden hamsters challenged with SARS-CoV- 2 (B.1.

View Article and Find Full Text PDF

Background/objectives: The ongoing COVID-19 pandemic has underscored the need for alternative prophylactic measures, particularly for populations for whom vaccines may not be effective or accessible. This study aims to evaluate the efficacy of intranasally administered IgY antibodies derived from hen egg yolks as a protective agent against SARS-CoV-2 infection in Syrian golden hamsters, a well-established animal model for COVID-19.

Methods: Hens were immunized with the spike protein of SARS-CoV-2 to generate IgY antibodies.

View Article and Find Full Text PDF

Background/objectives: Influenza viruses and SARS-CoV-2 are currently cocirculating with similar seasonality, and both pathogens are characterized by a high mutational rate which results in reduced vaccine effectiveness and thus requires regular updating of vaccine compositions. Vaccine formulations combining seasonal influenza and SARS-CoV-2 strains can be considered promising and cost-effective tools for protection against both infections.

Methods: We used a licensed seasonal trivalent live attenuated influenza vaccine (3×LAIV) as a basis for the development of a modified 3×LAIV/CoV-2 vaccine, where H1N1 and H3N2 LAIV strains encoded an immunogenic cassette enriched with conserved T-cell epitopes of SARS-CoV-2, whereas a B/Victoria lineage LAIV strain was unmodified.

View Article and Find Full Text PDF

Antigenic Imprinting Dominates Humoral Responses to New Variants of SARS-CoV-2 in a Hamster Model of COVID-19.

Microorganisms

December 2024

KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Virology, Antiviral Drug and Vaccine Research Group, Laboratory of Molecular Vaccinology & Vaccine Discovery (MVVD), 3000 Leuven, Belgium.

The emergence of SARS-CoV-2 variants escaping immunity challenges the efficacy of current vaccines. Here, we investigated humoral recall responses and vaccine-mediated protection in Syrian hamsters immunized with the third-generation Comirnaty Omicron XBB.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!