In 2019, a new virus, SARS-CoV-2, responsible for the COVID-19 disease, was discovered. Asymptomatic and mildly symptomatic patients were forced to quarantine and closely monitor their symptoms and vital signs, most of the time at home. This paper describes e-CoVig, a novel mHealth application, developed as an alternative to the current monitoring paradigm, where the patients are followed up by direct phone contact. The e-CoVig provides a set of functionalities for remote reporting of symptoms, vital signs, and other clinical information to the health services taking care of these patients. The application is designed to register and transmit the heart rate, blood oxygen saturation (SpO2), body temperature, respiration, and cough. The system features a mobile application, a web/cloud platform, and a low-cost specific device to acquire the temperature and SpO2. The architecture of the system is flexible and can be configured for different operation conditions. Current commercial devices, such as oximeters and thermometers, can also be used and read using the optical character recognition (OCR) functionality of the system. The data acquired at the mobile application are sent automatically to the web/cloud application and made available in real-time to the medical staff, enabling the follow-up of several users simultaneously without the need for time consuming phone call interactions. The system was already tested for its feasibility and a preliminary deployment was performed on a nursing home showing promising results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152780PMC
http://dx.doi.org/10.3390/s21103397DOI Listing

Publication Analysis

Top Keywords

e-covig novel
8
novel mhealth
8
symptoms vital
8
vital signs
8
mobile application
8
system
5
application
5
mhealth system
4
system remote
4
remote monitoring
4

Similar Publications

The aim of this work was to validate the measurements of three physiological parameters, namely, body temperature, heart rate, and peripheral oxygen saturation, captured with an out-of-the-lab device using measurements taken with clinically proven devices. The out-of-the-lab specialized device was integrated into a customized mHealth application, e-CoVig, developed within the AIM Health project. To perform the analysis, single consecutive measurements of the three vital parameters obtained with e-CoVig and with the standard devices from patients in an intensive care unit were collected, preprocessed, and then analyzed through classical agreement analysis, where we used Lin's concordance coefficient to assess the agreement correlation and Bland-Altman plots with exact confidence intervals for the limits of agreement to analyze the paired data readings.

View Article and Find Full Text PDF

e-CoVig: A Novel mHealth System for Remote Monitoring of Symptoms in COVID-19.

Sensors (Basel)

May 2021

Instituto Superior Técnico (IST), Av. Rovisco Pais n. 1, 1049-001 Lisboa, Portugal.

In 2019, a new virus, SARS-CoV-2, responsible for the COVID-19 disease, was discovered. Asymptomatic and mildly symptomatic patients were forced to quarantine and closely monitor their symptoms and vital signs, most of the time at home. This paper describes e-CoVig, a novel mHealth application, developed as an alternative to the current monitoring paradigm, where the patients are followed up by direct phone contact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!