Effect of Ionizing Radiation on the Bacterial and Fungal Endophytes of the Halophytic Plant .

Microorganisms

State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

Published: May 2021

AI Article Synopsis

  • Endophytic bacteria and fungi, which live inside plants in different environments, were studied in halophytes (plants that thrive in salty conditions) exposed to ionizing radiation and other stress factors.
  • The study found that Actinobacteria and Dothideomycetes were the most common in these communities, with aerial parts of the plants showing more fungal diversity while roots showed more bacterial diversity.
  • While radiation impacted the structure of endophytic communities in roots, it did not significantly affect bacterial abundance in either plant part, and it suggested different mechanisms are at play for endophyte communities in response to environmental stress between roots and aerial tissues.

Article Abstract

Endophytic bacteria and fungi colonize plants that grow in various types of terrestrial and aquatic ecosystems. Our study investigates the communities of endophytic bacteria and fungi of halophyte growing in stressed habitats with ionizing radiation. The geochemical factors and radiation (at low, medium, high level and control) both affected the structure of endophytic communities. The bacterial class Actinobacteria and the fungal class Dothideomycetes predominated the endophytic communities of . Aerial tissues of had higher fungal diversity, while roots had higher bacterial diversity. Radiation had no significant effect on the abundance of bacterial classes. Soil pH, total nitrogen, and organic matter showed significant effects on the diversity of root endophytes. Radiation affected bacterial and fungal community structure in roots but not in aerial tissues, and had a strong effect on fungal co-occurrence networks. Overall, the genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments, however negative correlations were found between endophytic bacteria and fungi in the plant. The genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments. Our findings suggest that radiation affects root endophytes, and that the endophytes associated with aerial tissues and roots of follow different mechanisms for community assembly and different paradigms in stress response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152737PMC
http://dx.doi.org/10.3390/microorganisms9051050DOI Listing

Publication Analysis

Top Keywords

endophytic bacteria
20
bacteria fungi
20
aerial tissues
12
ionizing radiation
8
radiation bacterial
8
bacterial fungal
8
endophytic communities
8
root endophytes
8
genetic diversity
8
diversity endophytic
8

Similar Publications

Endophytes can be a promising alternative for sustainable agronomic practices. In this study, we report for the first time a root-colonizing fungal strain (Sl27) of the genus Leptobacillium as a tomato (Solanum lycopersicum) endophyte, with no clear homology to any known species. Performed analyses and assays, including morphological and physiological characterization of the fungal isolate, provided insights into the ecological niche and potential agronomical and industrial applications of the fungal isolate.

View Article and Find Full Text PDF

Beneficial root endophytic fungi induce systemic responses, growth promotion, and induced systemic resistance (ISR) in colonized host plants. The soil application of chitin, a main component of fungal cell walls, also systemically induces disease resistance. Therefore, chitin recognition and its downstream signaling pathway mediate ISR triggered by beneficial fungi colonizing the root.

View Article and Find Full Text PDF

Antimicrobial polyketides from the endophytic fungus Fusarium asiaticum QA-6 derived from medicinal plant Artemisia argyi.

Phytochemistry

January 2025

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Nanhai Road 7, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, PR China. Electronic address:

Seven previously undescribed polyketide derivatives, fusariumtides A-G (1-7), together with three known analogues (8-10), were isolated from the culture extract of Fusarium asiaticum QA-6, an endophytic fungus obtained from the fresh stem tissue of the medicinal plant Artemisia argyi H. Lev. & Vaniot.

View Article and Find Full Text PDF

Microbial inheritance through seed: a clouded area needs to be enlightened.

Arch Microbiol

January 2025

Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.

Seed endophytes are actively used by the mother plant as both reservoir and vector of beneficial microbes. During seed dormancy endophytes experience significant physiochemical changes and only competent endophytes could colonise successfully in seeds and some of them act as obligate endophyte that are transmitted vertically across generations. The adaptive nature of endophytes allows them to switch lifestyles depending on environment and host conditions.

View Article and Find Full Text PDF

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!