Serotonin receptors play important roles in neuronal excitation, emotion, platelet aggregation, and vasoconstriction. The serotonin receptor subtype 2A (5-HTR) is a Gq-coupled GPCR, which activate phospholipase C. Although the structures and functions of 5-HTRs have been well studied, little has been known about their real-time dynamics. In this study, we analyzed the intramolecular motion of the 5-HTR in living cells using the diffracted X-ray tracking (DXT) technique. The DXT is a very precise single-molecular analytical technique, which tracks diffraction spots from the gold nanocrystals labeled on the protein surface. Trajectory analysis provides insight into protein dynamics. The 5-HTRs were transiently expressed in HEK 293 cells, and the gold nanocrystals were attached to the N-terminal introduced FLAG-tag via anti-FLAG antibodies. The motions were recorded with a frame rate of 100 μs per frame. A lifetime filtering technique demonstrated that the unliganded receptors contain high mobility population with clockwise twisting. This rotation was, however, abolished by either a full agonist α-methylserotonin or an inverse agonist ketanserin. Mutation analysis revealed that the "ionic lock" between the DRY motif in the third transmembrane segment and a negatively charged residue of the sixth transmembrane segment is essential for the torsional motion at the N-terminus of the receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157010 | PMC |
http://dx.doi.org/10.3390/ijms22105285 | DOI Listing |
IUCrdata
December 2024
E-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA.
A layered cobalt coordination polymer containing both 4-(2-carboxyl-atoeth-yl)benzoate (ceb) and 1,4-bis-(3-pyridyl-meth-yl)piperazine (3-bpmp) ligands, [Co(CHO)(CHN)(HO)] or [Co(ceb)(3-bpmp)(HO)] , was isolated and structurally characterized by single-crystal X-ray diffraction. Chain-like [Co(ceb)(HO)] units are oriented parallel to [101]. These are connected into (4,4)-grid coordination polymer layers by tethering 3-bpmp ligands.
View Article and Find Full Text PDFIUCrdata
December 2024
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, NO-0315 Oslo, Norway.
Tin(IV) sulfate dihydrate, Sn(SO)·2HO, was prepared in a reflux of sulfuric acid under oxidizing conditions. Its crystal structure was determined from powder synchrotron X-ray diffraction data and is constructed of (100) layers of [SnO(HO)] octa-hedra (point group symmetry 1) corner-connected by sulfate tetra-hedra. Hydrogen bonds of moderate strength between the water mol-ecules and sulfate O atoms hold the layers together.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
School of Chemical and Biological Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
The crystal structure of a highly loaded complex of silicalite-1 (SL-1) with eight mol-ecules of -xylene per unit cell has been solved by single-crystal X-ray diffraction. In the crystal, four symmetrical SiO·2CH subunits per unit cell are observed. The -xylene mol-ecules sit at two different positions within the SL-1 channels.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint Aubin, 91192, Gif-sur-Yvette, France.
The synthesis, crystal structure, Hirshfeld analysis, and anti-fungal assessment of a new monohydrated Schiff base with a triazole moiety are reported. The structural study revealed the presence of three significant hydrogen bonds (N-H⋯N, O-H⋯N, and O-H⋯O), which contribute to the cohesion of the crystal. These bonds generate two-dimensional layers parallel to the plane, built on the basis of rings with the graph-set motifs (8) and (24).
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany.
Reaction of Co(NCS) with 4-methyl-pyridine in water leads to the formation of single crystals of the title compound, [Co(NCS)(CHN)] . The asymmetric unit consists of two crystallographically independent thio-cyanate anions and two crystallographically independent 4-methyl-pyridine coligands in general positions, as well as of two different Co cations, of which one is located on a twofold rotational axis, whereas the second occupies a center of inversion. The methyl H atoms in both 4-methyl-pyridine ligands are disordered and were refined using a split model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!