Skeletal myopathy encompasses both atrophy and dysfunction and is a prominent event in cancer and chemotherapy-induced cachexia. Here, we investigate the effects of a chemotherapeutic agent, 5-fluorouracil (5FU), on skeletal muscle mass and function, and whether small-molecule therapeutic candidate, BGP-15, could be protective against the chemotoxic challenge exerted by 5FU. Additionally, we explore the molecular signature of 5FU treatment. Male Balb/c mice received metronomic tri-weekly intraperitoneal delivery of 5FU (23 mg/kg), with and without BGP-15 (15 mg/kg), 6 times in total over a 15 day treatment period. We demonstrated that neither 5FU, nor 5FU combined with BGP-15, affected body composition indices, skeletal muscle mass or function. Adjuvant BGP-15 treatment did, however, prevent the 5FU-induced phosphorylation of p38 MAPK and p65 NF-B subunit, signalling pathways involved in cell stress and inflammatory signalling, respectively. This as associated with mitoprotection. 5FU reduced the expression of the key cytoskeletal proteins, desmin and dystrophin, which was not prevented by BGP-15. Combined, these data show that metronomic delivery of 5FU does not elicit physiological consequences to skeletal muscle mass and function but is implicit in priming skeletal muscle with a molecular signature for myopathy. BGP-15 has modest protective efficacy against the molecular changes induced by 5FU.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156038 | PMC |
http://dx.doi.org/10.3390/ph14050478 | DOI Listing |
Unlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.
View Article and Find Full Text PDFSkeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.
View Article and Find Full Text PDFCase Rep Rheumatol
January 2025
Department of Rheumatology, Royal Wolverhampton NHS Trust, Wolverhampton, UK.
McArdle disease or glycogen storage disease Type V is a genetic condition caused by PYGM gene mutations leading to exercise intolerance and fatigability. The condition most commonly presents in childhood. In rare cases, patients have presented with late-onset McArdle disease.
View Article and Find Full Text PDFBio Protoc
January 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
Histological techniques to study muscle are crucial for assessing skeletal muscle health. To preserve tissue morphology, samples are usually fixed in formaldehyde or cryopreserved immediately after excision from the body. Freezing samples in liquid nitrogen, using isopentane as a mediator for efficient cooling, preserves the tissue in its natural state.
View Article and Find Full Text PDFOncol Lett
March 2025
Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kansai 602-8566, Japan.
Cancer cachexia is a complex disorder characterized by skeletal muscle loss, which may influence the prognosis of patients with cancer. The cachexia index (CXI) is a new index for cachexia. The present study aimed to assess whether the CXI determined by bioelectrical impedance analysis (BIA) is valuable for predicting survival in patients with gastrointestinal cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!