A corrugated disk resonator with eight grooves is proposed for wideband bandpass filter (BPF) design. Due to the spoof localized surface plasmons resonances of the corrugated metallic structure, the dipole, quadrupole, hexapole modes, and a fundamental mode excited by the introduced short-circuited via holes are employed to realize four transmission poles (TPs) in the passband. The theoretical analysis is described by the electric field and current distributions on the resonator. The resonant frequencies can be tuned easily by the parameters of the structure, which can be used to adjust the center frequency and bandwidth of the BPF freely. Furthermore, two resonators are cascaded to obtain eight TPs to improve the selectivity performance. Finally, three fabricated filters demonstrate the design method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157127 | PMC |
http://dx.doi.org/10.3390/ma14102614 | DOI Listing |
Materials (Basel)
December 2024
Key Laboratory of Near-Range RF Sensing ICs and Microsystems (NJUST), Ministry of Education, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Frequency-selective surfaces (FSSs) have attracted great attention owing to their unique feature to manipulate transmission performance over the frequency domain. In this work, a filtering antenna-filtering antenna (FA-FA) FSS with a wide passband and double-side sharp roll-off characteristics is presented by inter-using the filtering antenna and receiving-transmitting metasurface methods. First, a dual-polarized filtering antenna element was designed by employing a parasitic band-stop structure with an L-probe feed.
View Article and Find Full Text PDFFrequency response measurement, or the forward transmission coefficient (S) measurement for a two-port network, is the key function of a vector network analyzer (VNA). In this paper, a broadband and high dynamic range (DR) microwave S parameter measurement scheme based on an optical phase-locked loop (OPLL) is proposed. By heterodyning two phase-locked hybrid integrated ultra-narrow linewidth lasers, a microwave signal with low phase noise and spurious level is generated as the incident signal and reference signal, and the signal frequency can be easily manipulated over a wide range by tuning the master laser wavelength.
View Article and Find Full Text PDFIn this paper, a highly integrated frequency selective rasorber (FSR) with both broadband absorption and high selectivity is designed. The proposed FSR is composed of three lossy layers and a bandpass frequency selective surface (FSS). The three lossy layers are designed based on graphene-metal hybrid structures to achieve two wide absorption bands of 1.
View Article and Find Full Text PDFOne-dimensional photonic wave devices exhibit a pivotal role in wave engineering. Despite their relative simplicity, designing 1D wave devices that implement complex functionalities over a broad frequency range is challenging and requires careful sculpting and multiple optimizations. This paper theoretically and experimentally demonstrates a new inverse design paradigm to achieve a desired broadband frequency response efficiently.
View Article and Find Full Text PDFSci Rep
November 2024
School of Information Science and Engineering, Engineering Research Center for Metallurgical Automation and Detecting Technology Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China.
In this paper, a novel compact bandpass filter (BPF) with a wide out-of-band rejection is proposed. It can achieve broadband characteristics by combining hollow bowtie-type spoof surface plasmon polaritons (SSPPs) with complementary H-type defected grounded structures (DGSs) through aperture coupling. Compared with the conventional SSPP unit cells, the hollow bowtie-type structure exhibits much better slow-wave characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!