Type 1 diabetes mellitus (T1D) results from the destruction of insulin-producing β cells in the islet of the pancreas by lymphocytes. Non-obese diabetic (NOD) mouse is an animal model frequently used for this disease. It has been considered that T1D is a T cell-mediated autoimmune disease. Both CD4+ and CD8+ T cells are highly responsible for the destruction of β cells within the pancreatic islets of Langerhans. Previous studies have revealed that regulatory T (Treg) cells play a critical role in the homeostasis of the immune system as well as immune tolerance to autoantigens, thereby preventing autoimmunity. Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Previous reports have demonstrated that VPA treatment decreases the incidence and severity of collagen-induced arthritis and experimental autoimmune neuritis by increasing the population of Treg cells in these mouse disease models. Given the effect of VPA in the induction of Treg cells' population, we evaluated the therapeutic potential and the protective mechanism of VPA treatment in the suppression of graft autoimmune rejection and immune recurrence in syngeneic or allogenic islet transplantation mouse models. In our study, we found that the treatment of VPA increased the expression of forkhead box P3 (FOXP3), which is a critical transcription factor that controls Treg cells' development and function. Our data revealed that 400 mg/kg VPA treatment in recipients effectively prolonged the survival of syngeneic and allogenic islet grafts. The percentage of Treg cells in splenocytes increased in VPA-treated recipients. We also proved that adoptive transfer of VPA-induced Tregs to the transplanted recipients effectively prolonged the survival of islet grafts. The results of this study provide evidence of the therapeutic potential and the underlying mechanism of VPA treatment in syngeneic islet transplantation for T1D. It also provides experimental evidence for cell therapy by adoptive transferring of in vitro VPA-induced Tregs for the suppression of autoimmune recurrence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157191PMC
http://dx.doi.org/10.3390/ph14050475DOI Listing

Publication Analysis

Top Keywords

vpa treatment
16
islet transplantation
12
treg cells
12
valproic acid
8
autoimmune recurrence
8
cell therapy
8
type diabetes
8
treg cells'
8
therapeutic potential
8
mechanism vpa
8

Similar Publications

Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres.

Cells

January 2025

Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.

Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest.

View Article and Find Full Text PDF

Valproic Acid Enhances Venetoclax Efficacy in Targeting Acute Myeloid Leukemia.

Diseases

January 2025

Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.

Background: Acute myeloid leukemia (AML) is a common and aggressive form of leukemia, yet current treatment strategies remain insufficient. Venetoclax, a BH3-mimetic approved for AML treatment, induces Bcl-2-dependent apoptosis, though its therapeutic efficacy is still limited. Therefore, new strategies to enhance the effect of venetoclax are highly sought.

View Article and Find Full Text PDF

The combination of thumb aplasia, epilepsy, cognitive impairment, skeletal deformities, and myopathy has not been previously reported. The patient is a 22-year-old man with congenital bilateral thumb aplasia, developmental delay, and cognitive impairment who suffered a first tonic-clonic seizure at the age of 16 and was treated with valproic acid (VPA). At the age of 22, lamotrigine was added due to seizure recurrences and absences.

View Article and Find Full Text PDF

Objectives: This experiment was carried out to investigate the protective effects of curcumin (CUR) on testicular damage induced by the valproic acid (VPA) administration.

Materials And Methods: Male Wistar-Albino rats (n=28, 250-300 g) were randomly divided into four groups: Control (1 ml saline, oral), VPA (500 mg/kg, IP), CUR (200 mg/kg, oral), or VPA+CUR (500 mg/kg, VPA, IP plus 200 mg/kg CUR, oral). The treatments were applied for 14 days.

View Article and Find Full Text PDF

Objective: An increasing number of antiseizure medications (ASMs) are approved for monotherapy for focal epilepsy, but direct comparisons of the lifetime cost-effectiveness of all existing treatment strategies are lacking. This study aims to compare the cost-effectiveness of new ASMs and traditional ASMs as first-line monotherapy for newly diagnosed focal epilepsy.

Method: We used a Markov model to evaluate the lifetime cost-effectiveness of 10 ASMs in the treatment of focal epilepsy, with lacosamide (LCM) as a control, from the perspective of society in the United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!