(1) Background: Mathematical exposure modeling of volatile organic compounds (VOCs) in consumer spray products mostly assumes instantaneous mixing in a room. This well-mixed assumption may result in the uncertainty of exposure estimation in terms of spatial resolution. As the inhalation exposure to chemicals from consumer spray products may depend on the spatial heterogeneity, the degree of uncertainty of a well-mixed assumption should be evaluated under specific exposure scenarios. (2) Methods: A room for simulation was divided into eight compartments to simulate inhalation exposure to an ethanol trigger and a propellant product. Real-time measurements of the atmospheric concentration in a room-sized chamber by proton transfer reaction mass spectrometry were compared with mathematical modeling to evaluate the non-homogeneous distribution of chemicals after their application. (3) Results: The well-mixed model overestimated short-term exposure, particularly under the trigger spray scenario. The uncertainty regarding the different chemical proportions in the trigger did not significantly vary in this study. (4) Conclusions: Inhalation exposure to aerosol generating sprays should consider the spatial uncertainty in terms of the estimation of short-term exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157054 | PMC |
http://dx.doi.org/10.3390/ijerph18105334 | DOI Listing |
The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.
View Article and Find Full Text PDFToxicology
January 2025
Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi, India, 110062. Electronic address:
Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different level in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level on surviving species model.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil. Electronic address:
Waste pile substrates from Fe mining may carry potentially toxic elements (PTE). Rehabilitation efforts must maintain soil vegetation cover effectively, avoiding the dispersion of particulate matter and reducing the risk to the environment and human health. Therefore, this study aims to evaluate the pseudo-total and extractable contents, perform chemical fractionation, and assess the bioaccessibility and risk of PTE in waste piles of Fe mining in the Eastern Amazon.
View Article and Find Full Text PDFToxicol Sci
January 2025
Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854.
Ozone is an urban air pollutant, known to cause lung injury and altered function. Using established models of acute (0.8 ppm, 3 h) and episodic (1.
View Article and Find Full Text PDFToxicology
January 2025
Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. Electronic address:
Air pollution is associated with increased risk of neurodegenerative and neuropsychiatric conditions. While animal models have increased our understanding of how air pollution contributes to brain pathologies - including through oxidative stress, inflammatory, and stress hormone pathways - investigation of underlying mechanisms remains limited due to a lack of human-relevant models that incorporate systemic processes. Our objective was to establish an ex vivo approach that enables assessment of the roles of plasma mediators in pollutant-induced effects in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!