The phenomenon of drug burst release is the main problem in the field of drug delivery systems, as it means that a good therapeutic effect cannot be acheived. Nanofibers developed by electrospinning technology have large specific surface areas, high porosity, and easily controlled morphology. They are being considered as potential carriers for sustained drug release. In this paper, we obtained polycaprolactone (PCL)/polylactic acid (PLA) core-shell porous drug-carrying nanofibers by using coaxial electrospinning technology and the nonsolvent-induced phase separation method. Roxithromycin (ROX), a kind of antibacterial agent, was encapsulated in the core layer. The morphology, composition, and thermal properties of the resultant nanofibers were characterized by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). Besides this, the in vitro drug release profile was investigated; it showed that the release rate of the prepared coaxial porous nanofibers with two different pore sizes was 30.10 ± 3.51% and 35.04 ± 1.98% in the first 30 min, and became 92.66 ± 3.13% and 88.94 ± 1.58% after 14 days. Compared with the coaxial nonporous nanofibers and nanofibers prepared by uniaxial electrospinning with or without pores, the prepared coaxial porous nanofibers revealed that the burst release was mitigated and the dissolution rate of the hydrophobic drugs was increased. The further antimicrobial activity demonstrated that the inhibition zone diameter of the coaxial nanofibers with two different pore sizes was 1.70 ± 0.10 cm and 1.73 ± 0.23 cm, exhibiting a good antibacterial effect against . Therefore, the prepared nanofibers with the coaxial porous structures could serve as promising drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157037 | PMC |
http://dx.doi.org/10.3390/nano11051316 | DOI Listing |
Environ Res
December 2024
State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Petroleum and Gas Engineering Southwest Petroleum University, Chengdu, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, PR China. Electronic address:
Adjusting the structure of the membrane and improving its performance proved to be an effective technique for accomplishing efficient dye wastewater purification. Water erosion of polyvinylpyrrolidone (PVP) core in polyacrylonitrile (PAN) nanofiber membrane modified with UiO-66-NH was successfully achieved, in this study, using coaxial electrospinning, and ZIF-8 with excellent performance was further epitaxy-grown in situ. Two differently shaped and positively charged MOFs confer strong adsorption capacity (adsorption capacity >2042 mg/g) on cationic dyes.
View Article and Find Full Text PDFACS Omega
October 2024
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Colonia Centro ,Hermosillo ,Sonora 83000, México.
The preparation of materials with application in the biomedical field needs to attend some characteristics such as biocompatibility, nontoxicity, adequate mechanical properties, and the ability to mimic the extracellular matrix. Scaffolds for use in cell culture were prepared based on gelatin, polylactic acid (PLA), aloe vera mucilage, and tetracycline. Fibers were prepared in single and coaxial configuration and then cross-linked with glutaraldehyde saturated vapor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
ACS Nano
October 2024
Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States.
Diabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Science, Bojnurd 74877-94149, Iran; Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran. Electronic address:
Electrospun nanofibrous membranes, with their unique structural features, can potentially enhance wound healing through controlled delivery of active agents. Here, an innovative porous nanofibrous membrane was developed as a dressing patch with antibacterial and anti-inflammatory functionalities for cutaneous wound healing. Zinc oxide nanoparticles (ZnO NPs) and Salvia abrotanoides essential oil (SAEO) were incorporated into sodium alginate, which served as the shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!