3406755820240811
2079-63821052021May17Antibiotics (Basel, Switzerland)Antibiotics (Basel)Insight on the Structure-to-Activity of Carbosilane Metallodendrimers in the Fight against Staphylococcus aureus Biofilms.58910.3390/antibiotics10050589Biofilm formation is a critical health concern, involved in most human bacterial infections. Combatting this mechanism, which increases resistance to traditional antibiotics and host immune defences, requires novel therapeutic approaches. The remarkable biocide activity and the monodispersity of carbosilane metallodendrimers make them excellent platforms to evaluate the impact of different structural parameters on the biological activity. In this work, we explore the influence of iminopyridine ring substituents on the antibacterial activity against planktonic and biofilm Staphylococcus aureus. New families of first-generation Ru(II) and Cu(II) metallodendrimers were synthesised and analysed, in comparison to the non-substituted counterparts. The results showed that the presence of methyl or methoxy groups in meta position to the imine bond decreased the overall positive charge on the metal ion and, subsequently, the activity against planktonic bacteria. However, it seemed a relevant parameter to consider for the prevention of biofilm formation, if they contribute to increasing the overall lipophilicity. An optimum balance of the charge and lipophilicity of the metallodrug, accomplished through structural design, will provide effective biocide agents against bacteria biofilms.LlamazaresCeliaCUniversity of Alcala, Department of Biomedicine and Biotechnology, 28805 Madrid, Spain.Sanz Del OlmoNataliaNUniversity of Alcala, Research Institute in Chemistry "Andrés M. del Río" (IQAR) and Faculty of Science, Department of Organic and Inorganic Chemistry, 28805 Madrid, Spain.SoliveriJuanJUniversity of Alcala, Department of Biomedicine and Biotechnology, 28805 Madrid, Spain.de la MataF JavierFJ0000-0003-0418-3935University of Alcala, Research Institute in Chemistry "Andrés M. del Río" (IQAR) and Faculty of Science, Department of Organic and Inorganic Chemistry, 28805 Madrid, Spain.Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.University of Alcala, Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain.Copa-PatiñoJosé LuisJL0000-0002-2162-3907University of Alcala, Department of Biomedicine and Biotechnology, 28805 Madrid, Spain.García-GallegoSandraSUniversity of Alcala, Research Institute in Chemistry "Andrés M. del Río" (IQAR) and Faculty of Science, Department of Organic and Inorganic Chemistry, 28805 Madrid, Spain.Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.University of Alcala, Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain.engCTQ2017-86224-PMinisterio de Economía y CompetitividadIMMUNOTHERCAN-CM B2017/BMD-3733Comunidad de MadridNANODENDMED-II B2017/BMD-3703Comunidad de MadridResearch Talent Attraction Program 2017-T2/IND-5243Comunidad de MadridSBPLY/17/180501/000358Junta de Comunidades de Castilla-La ManchaCIBER-BBNInstituto de Salud Carlos IIIBeatriz Galindo grant BG20/00231Spanish Ministry of UniversitiesProject CM/BG/2021-001Comunidad de Madrid and University of AlcalaJournal Article20210517
SwitzerlandAntibiotics (Basel)1016374042079-6382Staphylococcus aureusantibacterialbiofilmcopperdendrimermetalmetallodendrimerrutheniumThe authors declare no conflict of interest.
20214212021512202151220216211920216360202163612021517epublish34067558PMC815665110.3390/antibiotics10050589antibiotics10050589Harris L.G., Foster S.J., Richards R.G. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: Review. Eur. Cell. Mater. 2002;4:39–60. doi: 10.22203/eCM.v004a04.10.22203/eCM.v004a0414562246Di Ruscio F., Guzzetta G., Bjørnholt J.V., Leegaard T.M., Moen A.E.F., Merler S., Freiesleben de Blasio B. Quantifying the transmission dynamics of MRSA in the community and healthcare settings in a low-prevalence country. Proc. Natl. Acad. Sci. USA. 2019;116:14599–14605. doi: 10.1073/pnas.1900959116.10.1073/pnas.1900959116PMC664234631262808Paharik A.E., Horswill A.R. The Staphylococcal biofilm: Adhesins, regulation, and host response. Microbiol. Spectr. 2016;4:1–27. doi: 10.1128/microbiolspec.VMBF-0022-2015.10.1128/microbiolspec.VMBF-0022-20150Berlanga M., Guerrero R. Living together in biofilms: The microbial cell factory and its biotechnological implications. Microb. Cell. Fact. 2016;15:165. doi: 10.1186/s12934-016-0569-5.10.1186/s12934-016-0569-5PMC504557527716327Majumdar S., Pal S. Bacterial intelligence: Imitation games, time-sharing, and long-range quantum coherence. J. Cell. Commun. Signal. 2017;11:281–284. doi: 10.1007/s12079-017-0394-6.10.1007/s12079-017-0394-6PMC555939828516324Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318.10.1126/science.284.5418.131810334980Sharma D., Misba L., Khan A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 2019;8:76. doi: 10.1186/s13756-019-0533-3.10.1186/s13756-019-0533-3PMC652430631131107Perazzi B., Camacho M., Bombicino K., Flores Z., Vay C., Famiglietti A. Staphylococcus aureus: New and old antimicrobial agents. Rev. Argent. Microbiol. 2010;42:199–202.21186674Liu Y., Shi L., Su L., van der Mei H.C., Jutte P.C., Ren Y., Busscher H.J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019;48:428–446. doi: 10.1039/C7CS00807D.10.1039/C7CS00807D30601473Ortega M.Á., Guzmán Merino A., Fraile-Martínez O., Recio-Ruiz J., Pekarek L., Guijarro L.G., García-Honduvilla N., Álvarez-Mon M., Buján J., García-Gallego S. Dendrimers and dendritic materials: From laboratory to medical practice in infectious diseases. Pharmaceutics. 2020;12:874. doi: 10.3390/pharmaceutics12090874.10.3390/pharmaceutics12090874PMC756008532937793Zarena A.S., Shubha G. Dendrimer a new dimension in targeting biofilms. Mini-Rev. Med. Chem. 2013;13:1448–1461. doi: 10.2174/13895575113139990064.10.2174/1389557511313999006423815581Claudel M., Schwarte J.V., Fromm K.M. New antimicrobial strategies based on metal complexes. Chemistry. 2020;2:849–899. doi: 10.3390/chemistry2040056.10.3390/chemistry2040056Sanz del Olmo N., Carloni R., Ortega P., García-Gallego S., de la Mata F.J. Metallodendrimers as a promising tool in the biomedical field: An overview. Chapter One. In: Pérez P.J., editor. Advances in Organometallic Chemistry. Volume 74. Academic Press; Cambridge, MA, USA: 2020. pp. 1–52.Llamazares C., Sanz del Olmo N., Ortega P., Gómez R., Soliveri J., de la Mata F.J., García-Gallego S., Copa-Patiño J.L. Antibacterial effect of carbosilane metallodendrimers in planktonic cells of Gram-positive and Gram-negative bacteria and Staphylococcus aureus biofilm. Biomolecules. 2019;9:405. doi: 10.3390/biom9090405.10.3390/biom9090405PMC676984931450779Sanz del Olmo N., Carloni R., Bajo A.M., Ortega P., Fattori A., Gómez R., Ottaviani M.F., García-Gallego S., Cangiotti M., de la Mata F.J. Insight into the antitumor activity of carbosilane Cu(II)—Metallodendrimers through their interaction with biological membrane models. Nanoscale. 2019;11:13330–13342. doi: 10.1039/C9NR03313K.10.1039/C9NR03313K31271405Carloni R., Sanz del Olmo N., Canonico B., Montanari M., Ciacci C., Ambrosi G., de la Mata F.J., Ottaviani M.F., García-Gallego S. Elaborated study of Cu(II) carbosilane metallodendrimers bearing substituted iminopyridine moieties as antitumor agents. Eur. J. Med. Chem. 2021;215:113292. doi: 10.1016/j.ejmech.2021.113292.10.1016/j.ejmech.2021.11329233631696Maroto-Díaz M., Elie B.T., Gómez-Sal P., Pérez-Serrano J., Gómez R., Contel M., de la Mata F.J. Synthesis and anticancer activity of carbosilane metallodendrimers based on arene ruthenium(II) complexes. Dalton. Trans. 2016;45:7049–7066. doi: 10.1039/C6DT00465B.10.1039/C6DT00465BPMC486395926990859Malkoch M., García-Gallego S., editors. Dendrimer Chemistry: Synthetic Approaches Towards Complex Architectures. Royal Society of Chemistry; Cambridge, UK: 2020. p. 293.10.1039/9781788012904García-Gallego S., Franci G., Falanga A., Gómez R., Folliero V., Galdiero S., De la Mata F.J., Galdiero M. Function oriented molecular design: Dendrimers as novel antimicrobials. Molecules. 2017;22:1581. doi: 10.3390/molecules22101581.10.3390/molecules22101581PMC615146428934169Heredero-Bermejo I., Copa-Patiño J.L., Soliveri J., García-Gallego S., Rasines B., Gómez R., de la Mata F.J., Pérez-Serrano J. In vitro evaluation of the effectiveness of new water-stable cationic carbosilane dendrimers against Acanthamoeba castellanii UAH-T17c3 trophozoites. Parasitol. Res. 2013;112:961–969. doi: 10.1007/s00436-012-3216-z.10.1007/s00436-012-3216-z23263327Kumar A., Dixit C.K. 3-Methods for characterization of nanoparticles. In: Nimesh S., Chandra R., Gupta N., editors. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Woodhead Publishing; Cambridge, UK: 2017. pp. 43–58.10.1016/B978-0-08-100557-6.00003-1Zapotoczna M., O’Neill E., O’Gara J.P. Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation. PLoS Pathog. 2016;12:e1005671. doi: 10.1371/journal.ppat.1005671.10.1371/journal.ppat.1005671PMC495604727442433Bosch P., Staneva D., Vasileva-Tonkova E., Grozdanov P., Nikolova I., Kukeva R., Stoyanova R., Grabchev I. New poly(propylene imine) dendrimer modified with acridine and its Cu(II) complex: Synthesis, characterization and antimicrobial activity. Materials. 2019;12:3020. doi: 10.3390/ma12183020.10.3390/ma12183020PMC676633231540365Kapoor Y., Kumar K. Quantitative structure activity relationship in drug design: An overview. SF J. Pharm. Anal. Chem. 2019;2:1017.Wang L., Erasquin U.J., Zhao M., Ren L., Zhang M.Y., Cheng G.J., Wang Y., Cai C. Stability, antimicrobial activity, and cytotoxicity of poly(amidoamine) dendrimers on titanium substrates. ACS Appl. Mater. Interfaces. 2011;3:2885–2894. doi: 10.1021/am2004398.10.1021/am200439821774463Ahamad T., Mapolie S.F., Alshehri S.M. Synthesis and characterization of polyamide metallodendrimers and their anti-bacterial and anti-tumor activities. Med. Chem. Res. 2012;21:2023–2031. doi: 10.1007/s00044-011-9715-0.10.1007/s00044-011-9715-0Suleman N., Kalhapure R.S., Mocktar C., Rambharose S., Singh M., Govender T. Silver salts of carboxylic acid terminated generation 1 poly (propyl ether imine) (PETIM) dendron and dendrimers as antimicrobial agents against S. aureus and MRSA. RSC Adv. 2015;5:34967–34978. doi: 10.1039/C5RA03179F.10.1039/C5RA03179FFuentes-Paniagua E., Sánchez-Nieves J., Hernández-Ros J.M., Fernández-Ezequiel A., Soliveri J., Copa-Patiño J.L., Gómez R., de la Mata F.J. Structure-activity relationship study of cationic carbosilane dendritic systems as antibacterial agents. RSC Adv. 2016;6:7022–7033. doi: 10.1039/C5RA25901K.10.1039/C5RA25901K