A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Calyculin A Effect on γH2AX/53BP1 Focus Formation and Apoptosis in Human Umbilical Cord Blood Lymphocytes. | LitMetric

Evaluation of Calyculin A Effect on γH2AX/53BP1 Focus Formation and Apoptosis in Human Umbilical Cord Blood Lymphocytes.

Int J Mol Sci

Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, University Science Park for Biomedicine, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia.

Published: May 2021

Dephosphorylation inhibitor calyculin A (cal A) has been reported to inhibit the disappearance of radiation-induced γH2AX DNA repair foci in human lymphocytes. However, other studies reported no change in the kinetics of γH2AX focus induction and loss in irradiated cells. While apoptosis might interplay with the kinetics of focus formation, it was not followed in irradiated cells along with DNA repair foci. Thus, to validate plausible explanations for significant variability in outputs of these studies, we evaluated the effect of cal A (1 and 10 nM) on γH2AX/53BP1 DNA repair foci and apoptosis in irradiated (1, 5, 10, and 100 cGy) human umbilical cord blood lymphocytes (UCBL) using automated fluorescence microscopy and annexin V-FITC/propidium iodide assay/γH2AX pan-staining, respectively. No effect of cal A on γH2AX and colocalized γH2AX/53BP1 foci induced by low doses (≤10 cGy) of γ-rays was observed. Moreover, 10 nM cal A treatment decreased the number of all types of DNA repair foci induced by 100 cGy irradiation. 10 nM cal A treatment induced apoptosis already at 2 h of treatment, independently from the delivered dose. Apoptosis was also detected in UCBL treated with lower cal A concentration, 1 nM, at longer cell incubation, 20 and 44 h. Our data suggest that apoptosis triggered by cal A in UCBL may underlie the failure of cal A to maintain radiation-induced γH2AX foci. All DSB molecular markers used in this study responded linearly to low-dose irradiation. Therefore, their combination may represent a strong biodosimetry tool for estimation of radiation response to low doses. Assessment of colocalized γH2AX/53BP1 improved the threshold of low dose detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196852PMC
http://dx.doi.org/10.3390/ijms22115470DOI Listing

Publication Analysis

Top Keywords

dna repair
16
repair foci
16
focus formation
8
human umbilical
8
umbilical cord
8
cord blood
8
blood lymphocytes
8
cal
8
radiation-induced γh2ax
8
irradiated cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!