Combining the selective targeting of tumor cells through antigen-directed recognition and potent cell-killing by cytotoxic payloads, antibody-drug conjugates (ADCs) have emerged in recent years as an efficient therapeutic approach for the treatment of various cancers. Besides a number of approved drugs already on the market, there is a formidable follow-up of ADC candidates in clinical development. While selection of the appropriate antibody (A) and drug payload (D) is dictated by the pharmacology of the targeted disease, one has a broader choice of the conjugating linker (C). In the present paper, we review the chemistry of ADCs with a particular emphasis on the medicinal chemistry perspective, focusing on the chemical methods that enable the efficient assembly of the ADC from its three components and the controlled release of the drug payload.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152005 | PMC |
http://dx.doi.org/10.3390/ph14050442 | DOI Listing |
Sci Rep
January 2025
Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR.
View Article and Find Full Text PDFAAPS J
January 2025
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
Antibody-drug conjugates (ADCs) are intricate compounds that pose significant challenges in bioanalytical characterization. Therefore, multiple bioanalytical methods are required to comprehensively elucidate their pharmacokinetic (PK) profiles. In this study, we investigated DS001, an ADC consisting of a humanized monoclonal antibody (hRS7), a cleavable chemical linker, and the microtubule inhibitor monomethyl auristatin E (MMAE), with a drug-to-antibody ratio (DAR) of 8.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
Homogeneous antibody-drug conjugates (ADCs) exhibit significantly improved pharmacological properties compared to their heterogeneous counterparts. Site-specific conjugation of the payload to the IgG required for homogeneity can be achieved using enzymes. One example is microbial transglutaminase (MTGase), which can selectively perform transamidation on the Q295 residue of human Fc when N297 glycans are removed.
View Article and Find Full Text PDFCells
December 2024
Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.
Advanced triple-negative breast cancer (TNBC) has poorer outcomes due to its aggressive behavior and restricted therapeutic options. While therapies like checkpoint inhibitors and PARP inhibitors offer some benefits, chemotherapy remains ineffective beyond the first line of treatment. Antibody-drug conjugates (ADCs) like sacituzumab govitecan-hziy (SG) represent a significant advancement.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan. Electronic address:
We developed a novel DNA aptamer, D8#24S1, which specifically recognizes mertansine (DM1), the cytotoxic payload of the antibody-drug conjugate (ADC) trastuzumab emtansine (T-DM1), and applied it for T-DM1 analysis. D8#24S1 was obtained through SELEX and was shown to specifically recognize DM1 with high affinity (dissociation constant, K = 84.2 nM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!