Trends in the dynamically developing application of biocatalysis for the synthesis and modification of polymers over the past 5 years are considered, with an emphasis on the production of biodegradable, biocompatible and functional polymeric materials oriented to medical applications. The possibilities of using enzymes not only as catalysts for polymerization but also for the preparation of monomers for polymerization or oligomers for block copolymerization are considered. Special attention is paid to the prospects and existing limitations of biocatalytic production of new synthetic biopolymers based on natural compounds and monomers from biomass, which can lead to a huge variety of functional biomaterials. The existing experience and perspectives for the integration of bio- and chemocatalysis in this area are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124709 | PMC |
http://dx.doi.org/10.3390/molecules26092750 | DOI Listing |
Nat Plants
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
Plant cuticular waxes serve as highly responsive adaptations to variable environments. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
Nat Commun
January 2025
Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
Phospholipids are the most abundant component in lipid membranes and are essential for the structural and functional integrity of the cell. In eukaryotic cells, phospholipids are primarily synthesized de novo through the Kennedy pathway that involves multiple enzymatic processes. The terminal reaction is mediated by a group of cytidine-5'-diphosphate (CDP)-choline /CDP-ethanolamine-phosphotransferases (CPT/EPT) that use 1,2-diacylglycerol (DAG) and CDP-choline or CDP-ethanolamine to produce phosphatidylcholine (PC) or phosphatidylethanolamine (PE) that are the main phospholipids in eukaryotic cells.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China.
Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABC expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.
View Article and Find Full Text PDFOrg Lett
December 2024
Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.
Inspired by natural cryptic halogenation in -bond formation, this study developed a synthetic approach combining biocatalytic bromination with transition-metal-catalyzed cross-coupling. Using the cyanobacterial VHPO, a robust and sustainable bromination-arylation cascade was created. Genetic modifications allowed enzyme immobilization, enhancing the compatibility between biocatalysis and chemocatalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!