Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Femtosecond lasers allow for high-precision, high-quality ablation of biological tissues thanks to their capability of minimizing the thermal loads into the irradiated material. Nevertheless, reported ablation rates remain still too limited to enable their exploitation on a clinical level. This study demonstrates the possibility to upscale the process of fs laser ablation of bone tissue by employing industrially available fs laser sources. A comprehensive parametric study is presented in order to optimize the bone tissue ablation rate while maintaining the tissue health by avoiding excessive thermal loads. Three different absorption regimes are investigated by employing fs laser sources at 1030 nm, 515 nm and 343 nm. The main differences in the three different wavelength regimes are discussed by comparing the evolution of the ablation rate and the calcination degree of the laser ablated tissue. The maximum of the ablation rate is obtained in the visible regime of absorption where a maximum value of 0.66 mm/s is obtained on a non-calcined tissue for the lowest laser repetition rate and the lowest spatial overlap between successive laser pulses. In this regime, the hemoglobin present in the fresh bone tissue is the main chromophore involved in the absorption process. To the best of our knowledge, this is the highest ablation rate obtained on porcine femur upon fs laser ablation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124249 | PMC |
http://dx.doi.org/10.3390/ma14092429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!