The pathogenesis of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still not fully unraveled. Though preventive vaccines and treatment methods are out on the market, a specific cure for the disease has not been discovered. Recent investigations and research studies primarily focus on the immunopathology of the disease. A healthy immune system responds immediately after viral entry, causing immediate viral annihilation and recovery. However, an impaired immune system causes extensive systemic damage due to an unregulated immune response characterized by the hypersecretion of chemokines and cytokines. The elevated levels of cytokine or hypercytokinemia leads to acute respiratory distress syndrome (ARDS) along with multiple organ damage. Moreover, the immune response against SARS-CoV-2 has been linked with race, gender, and age; hence, this viral infection's outcome differs among the patients. Many therapeutic strategies focusing on immunomodulation have been tested out to assuage the cytokine storm in patients with severe COVID-19. A thorough understanding of the diverse signaling pathways triggered by the SARS-CoV-2 virus is essential before contemplating relief measures. This present review explains the interrelationships of hyperinflammatory response or cytokine storm with organ damage and the disease severity. Furthermore, we have thrown light on the diverse mechanisms and risk factors that influence pathogenesis and the molecular pathways that lead to severe SARS-CoV-2 infection and multiple organ damage. Recognition of altered pathways of a dysregulated immune system can be a loophole to identify potential target markers. Identifying biomarkers in the dysregulated pathway can aid in better clinical management for patients with severe COVID-19 disease. A special focus has also been given to potent inhibitors of proinflammatory cytokines, immunomodulatory and immunotherapeutic options to ameliorate cytokine storm and inflammatory responses in patients affected with COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150955 | PMC |
http://dx.doi.org/10.3390/pathogens10050565 | DOI Listing |
BMC Immunol
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Republic of Korea.
Background: Interleukin-6 (IL-6) plays a central role in sepsis-induced cytokine storm involving immune hyperactivation and early neutrophil activation. Programmed death protein-1 (PD-1) is associated with sepsis-induced immunosuppression and lymphocyte apoptosis. However, the effects of simultaneous blockade of IL-6 and PD-1 in a murine sepsis model are not well understood.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Hematology, Daping Hospital, Third Military Medical University (Army Medical University), No.10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
Background: Relapsed/refractory classic Hodgkin lymphoma (R/R cHL) remains challenging to treat, and anti-CD30 chimeric antigen receptor T (CAR-T) cell therapy may be effective. This meta-analysis investigates the efficacy and safety of anti-CD30 CAR-T cell therapy for treating R/R cHL.
Methods: A systematic literature search of PubMed, Cochrane, Embase, ClinicalTrials.
Mol Biol Rep
January 2025
Department of Internal Medicine, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.
View Article and Find Full Text PDFJ Adv Pract Oncol
September 2024
St Luke's Health System - Pharmacy, Boise, Idaho.
Bispecific antibodies (BsAbs) have emerged as crucial therapeutic agents for patients with relapsed/refractory diffuse large B-cell lymphoma, multiple myeloma, and most recently, lung cancer. These therapies have demonstrated remarkable efficacy in clinical trials; however, multidisciplinary collaboration is essential to ensure optimal patient outcomes amid the operational complexities associated with BsAb therapy. As BsAbs are being prepared for broader adoption, clinicians and treatment centers must navigate operational challenges, including financial considerations, patient selection, caregiver involvement, and transitions of care.
View Article and Find Full Text PDFThis study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!