Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150788 | PMC |
http://dx.doi.org/10.3390/vaccines9050477 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
Peptide-loaded poly(lactide-co-glycolide) (PLGA) nanocarriers represent a transformative approach to addressing the challenges of peptide-based therapies. These systems offer solutions to peptide instability, enzymatic degradation, and limited bioavailability by providing controlled release, targeted delivery, and improved stability. The versatility of PLGA nanocarriers extends across therapeutic domains, including cancer therapy, neurodegenerative diseases, vaccine development, and regenerative medicine.
View Article and Find Full Text PDFPLoS One
January 2025
Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia.
Hepatitis C Virus (HCV) is a blood borne pathogen that affects around 200 million individuals worldwide. Immunizations against the Hepatitis C Virus are intended to enhance T-cell responses and have been identified as a crucial component of successful antiviral therapy. Nevertheless, attempts to mediate clinically relevant anti-HCV activity in people have mainly failed, despite the vaccines present satisfactory progress.
View Article and Find Full Text PDFHeliyon
January 2025
Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Rabies is a serious zoonotic disease caused by the rabies virus (RABV). Despite the successful development of vaccines and efforts made in drug discovery, rabies is incurable. Therefore, development of novel drugs is of interest to the scientific community.
View Article and Find Full Text PDFHeliyon
January 2025
Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.
Background: TG02 is a peptide-based cancer vaccine eliciting immune responses to oncogenic codon 12/13 mutations. This phase 1 clinical trial (NCT02933944) assessed the safety and immunological efficacy of TG02 adjuvanted by GM-CSF in patients with -mutant colorectal cancer.
Methods: In the interval between completing CRT and pelvic exenteration, patients with resectable mutation-positive, locally advanced primary or current colorectal cancer, received 5-6 doses of TG02/GM-CSF.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!