Ternary quantum dots (QDs) are novel nanomaterials that can be used in chemical analysis due their unique physicochemical and spectroscopic properties. These properties are size-dependent and can be adjusted in the synthetic protocol modifying the reaction medium, time, source of heat, and the ligand used for stabilization. In the last decade, several spectroscopic methods have been developed for the analysis of organic and inorganic analytes in biological, drug, environmental, and food samples, in which different sensing schemes have been applied using ternary quantum dots. This review addresses the different synthetic approaches of ternary quantum dots, the sensing mechanisms involved in the analyte detection, and the predominant areas in which these nanomaterials are used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125818 | PMC |
http://dx.doi.org/10.3390/molecules26092764 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!