The extensive use of antibiotics leads to antibiotic residues in frequently consumed foods. Generally, the main use of antibiotics in animals is to treat and prevent diseases and growth promotion. However, the residues and their breakdown products have several side effects on the human body and, in a broader sense, on the environment. In relation to the human body, the frequency of mutations is increased, the bone marrow is damaged (chloramphenicol), and the reproductive organs of humans are affected. Carcinogenic effects have been found with antibiotics such as sulfamethazine, oxytetracycline, and furazolidone. We summarized data from 73 scientific studies reporting antimicrobial residues in animal products that were freely available for sale. The studies were published in English starting from 1999 till 2021 and identified through the Pubmed search engine. The aims were to find out which antibiotics, legal or illegal, could be found in animal foods worldwide. Which are stable to get into the food chain and exceed the maximum residue limits (MRL) regarding the EU guidelines as a comparison. Reducing antimicrobial residues in food from animal origin and, in addition to this, fighting the tremendous growth and spread of antimicrobial resistance will undoubtedly be one of the most difficult food safety challenges in the coming years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148204 | PMC |
http://dx.doi.org/10.3390/antibiotics10050534 | DOI Listing |
Protein Pept Lett
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Turkey.
Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Land and Food Systems, University of British Columbia, Vancouver, Canada; Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada. Electronic address:
The Solanum tuberosum (common potato) plant specific insert (StPSI) is an antimicrobial protein domain that exhibits membrane-disrupting and membrane-fusing activity upon dimerization at acidic pH, activity proposed to involve electrostatic attraction and membrane anchoring mediated by specific positively-charged and conserved tryptophan residues, respectively. This study is the first to employ an in silico mutagenesis approach to clarify the structure-function relationship of a plant specific insert (PSI), where ten rationally-mutated StPSI variants were investigated using all-atom and coarse-grained molecular dynamics. The tryptophan (W) residue at position 18 (W18) of wild-type StPSI was predicted to confer structural flexibility to the dimer and mediate a partial separation of the assembled monomers upon bilayer contact, while residues including W77 and the lysine (K) residue at position 83 (K83) were predicted to stabilize secondary structure and influence association with the model membrane.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Amity Institute of Biotechnology, Amity University, Kolkata, India.
Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland.
Therapeutic and misuse of veterinary drugs, such as antibiotics, can increase the potential risk of residue contamination in animal-derived food products. For milk, these residual antibiotics can have an impact on efficiency in dairy processing factories, as well as economic loss, and can also cause side effects on consumer health. Lateral flow immunoassays (LFIAs) are gaining popularity for their ease of use, low cost and their fulfilment to the REASSURED (real-time connection/monitoring, easy sampling, affordable, specific, user-friendly, rapid/robust, equipment free, deliverable to end user) criteria.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!