Globally, drought and salinity stress critically constrain potato ( L.) production. Considering the impact of these stresses on crops and increasing food demand, insight into both tolerance and susceptibility is essential. The present study screens two potato cultivars, BARI-401 and Spunta, for their tolerance to simulated salinity and drought by in vitro LiCl and mannitol exposure. Plantlets treated with a range of LiCl (0, 10, 30, and 40 mM) and mannitol (0, 50, 100, 200, and 250 mM) concentrations were biochemically and physiologically characterized to assess their tolerance capacity. Shoot number, shoot length, root number, and root length were affected in both cultivars under higher LiCl and mannitol concentrations, even though Spunta was able to better maintain a higher shoot length under the 40 mM of LiCl and 250 mM of mannitol compared to BARI-401. The total phenol contents (TPC) in both cultivars were increased at the highest treatment concentration and the total flavonoids content (TFC) was decreased in BARI-401 as compared to Spunta. Higher free radical scavenging capacity (FRSC, low IC value) was recorded in Spunta as compared to BARI-401 with increasing treatment concentrations, which supports the high antioxidant capacity of Spunta. An inverse correlation between polyphenol oxidase (PPO) and TPC was noted in both cultivars. Peroxidase dismutase (POD) activity was increased significantly in both cultivars for all treatments, but activity was highest overall in Spunta. These physiological and biochemical analyses of both cultivars suggest that cultivar Spunta is more tolerant to salinity and drought stress. Further open-field experiments are required to confirm these results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148144 | PMC |
http://dx.doi.org/10.3390/plants10050924 | DOI Listing |
J Exp Bot
December 2024
School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.
During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China. Electronic address:
Abiotic stresses, including drought, salinity, and temperature extremes, are serious constraints to plant growth and agricultural development. These stresses that plants face in nature are often multiple and complex. Biotin carboxyl carrier protein subunit 2 (BCCP2) is one of the two subunits of biotin carboxyl carrier protein, which is a functional subunit of acetyl coenzyme A carboxylase, primarily studied for its role in fatty acid synthesis.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
The present study has evaluated different soybean genotypes to understand the salt and drought tolerance mechanisms based on physiological traits (photosynthesis, stomatal conductance, chlorophyll, and cell membrane stability), antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), reactive oxygen species (HO and O ), osmolytes (glycine betaine, proline, and Na/K), plant water relations (relative water content, water potential, and solute potential) and expression of related genes (, , , , , , , and ). The experiment was conducted in a two-factorial arrangement using randomized complete block design (RCBD) with genotypes as one factor and salt, drought, and control treatments as the other factor. All physiological traits, relative water content, and water potential decreased significantly in all soybean genotypes due to individual and combined treatments of drought and salt stress, with significantly less decrease in soybean genotypes G4620RX, DM45X61, and NARC-21.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China. Electronic address:
Chinese jujube (Ziziphus jujuba Mill.) exhibits a remarkable resilience to both drought and salinity. Additionally, it is characterized by a high sugar content, with sucrose being the predominant component of its soluble sugars.
View Article and Find Full Text PDFJ Plant Physiol
December 2024
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China. Electronic address:
MYB transcription factors exert crucial functions in enhancing plant stress tolerance, which is impacted by soil drought and salinity. In our study, the R2R3-type MYB transcription factor gene LcMYB5 from blue honeysuckle (Lonicera caerulea L.) was successfully cloned and identified, and confirmed its nuclear localization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!