In this paper, surface acoustic wave (SAW) sensors containing porous graphene/PVDF (polyvinylidene fluoride) molecularly imprinted sensitive membrane for DMMP gas detection were investigated. A 433 MHz ST-cut quartz SAW resonator was used to convert gas concentration changes into frequency shifts by the sensors. The porous graphene/PVDF film was fabricated on the sensor's surface by using the tape-casting method. DMMP molecules were adsorbed on the porous structure sensing film prepared by the 2-step method to achieve the specific recognition effect. The sensitivity of the sensor could reach -1.407 kHz·ppm. The response time and recovery time of the SAW sensor with porous graphene/PVDF sensing membrane were about 4.5 s and 5.8 s at the concentration of 10 ppm, respectively. The sensor has good anti-interference ability to most gases in the air.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152042PMC
http://dx.doi.org/10.3390/mi12050552DOI Listing

Publication Analysis

Top Keywords

porous graphene/pvdf
16
surface acoustic
8
acoustic wave
8
dmmp gas
8
sensor porous
8
molecularly imprinted
8
sensing membrane
8
sensors porous
8
porous
5
wave dmmp
4

Similar Publications

In this paper, surface acoustic wave (SAW) sensors containing porous graphene/PVDF (polyvinylidene fluoride) molecularly imprinted sensitive membrane for DMMP gas detection were investigated. A 433 MHz ST-cut quartz SAW resonator was used to convert gas concentration changes into frequency shifts by the sensors. The porous graphene/PVDF film was fabricated on the sensor's surface by using the tape-casting method.

View Article and Find Full Text PDF

Li-ion batteries (LIBs) employ porous, composite-type electrodes, where few weight percentages of carbonaceous conducting agents and polymeric binders are required to bestow electrodes with electrical conductivity and mechanical robustness. However, the use of such inactive materials has limited enhancements of battery performance in terms of energy density and safety. In this study, we introduced graphene/polyvinylidene fluoride (Gr/PVdF) composites in Ni-rich oxide cathodes for LIBs, replacing conventional conducting agents, carbon black (CB) nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!