A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bending Fatigue Behaviour and Fatigue Endurance Limit Prediction of 20Cr2Ni4A Gear Steel after the Ultrasonic Surface Rolling Process. | LitMetric

To study the effect of the surface properties on the bending fatigue performance of heavy-duty gear steel, the authors of this paper used the ultrasonic surface rolling process (USRP) to strengthen 20Cr2Ni4A carburized gear steel. USRP is a novel technique in which the ultrasonic technology is incorporated into the concept of conventional deep rolling. In this study, we illustrated how the surface properties and cross-section mechanical property influence the three-point bending fatigue life of the samples before and after USRP treatment. At the same time, the predicted failure probability-stress-number of cycles (--) curve was drawn, and the fatigue fracture was analysed. The results show that the fatigue limit increased from 651.36 MPa to 918.88 MPa after USRP treatment. The fatigue source is mainly from the sample interior or surface scratches, and the fatigue performance is positively correlated with the results of the material surface roughness, surface residual stress and surface hardness. At the same time, combined with the change in the phase structure, dislocation structure, residual stress and hardness of the cross section of the material, it is found that the USRP process turns the steel into a gradient material with five layers. Finally, the coupling mechanism between the ultrasonic surface strengthening deformation layer and the carburized layer of 20Cr2Ni4A carburized gear steel is presented, and the grain structure distribution diagram of the section of the 20Cr2Ni4A model after surface strengthening treatment was simulated. The mechanism that influenced the fatigue performance after USRP treatment is explained from the perspectives of the surface and cross section of the samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152014PMC
http://dx.doi.org/10.3390/ma14102516DOI Listing

Publication Analysis

Top Keywords

gear steel
16
bending fatigue
12
ultrasonic surface
12
fatigue performance
12
usrp treatment
12
surface
11
fatigue
8
surface rolling
8
rolling process
8
surface properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!