This work presents our study results of the magnetization of multilayer UV-reduced graphene oxide (UV-rGO), polymer matrix (polystyrene), and a conjugated composite based on them. The mesoscopic structure of the composites synthesized in this work was studied by such methods as X-ray diffraction, SEM, as well as NMR-, IR- and Raman spectroscopy. The magnetization of the composites under investigation and their components was measured using a vibrating-sample magnetometer. It has been shown that the UV-reduction process leads to the formation of many submicron holes distributed inside rGO flakes, which can create edge defects, causing possibly magnetic order in the graphite samples under investigation on the mesoscopic level. This article provides an alternative explanation for the ferromagnetic hysteresis loop in UV-rGO on the base of superconductivity type-II.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151044 | PMC |
http://dx.doi.org/10.3390/ma14102519 | DOI Listing |
PLoS One
January 2025
Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.
View Article and Find Full Text PDFNanoscale
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China. Electronic address:
Background: Pathogenic bacteria are widespread in nature and can cause infections and various complications, thereby posing a severe risk to public health. Therefore, simple, rapid, sensitive, and cost-effective methods must be developed to detect pathogenic bacteria. Biosensors are prominent platforms for detecting pathogenic bacteria owing to their high sensitivity, specificity, repeatability, and stability.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Chemistry, University college in Al-Jamoum, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
Accurate quantification of neonicotinoid insecticides is pivotal to ensure environmental safety by examining and mitigating their potential harmful effects on pollinators and aquatic ecosystems. In this scenario, detection of neonicotinoid insecticide, thiamethoxam (TMX), is significant for safeguarding ecological balance and human health. Hence, we developed a highly sensitive electrochemical sensor for detection of TMX in environmental samples, utilizing a novel nanocomposite with superior electrocatalytic properties and integrating an optimized neural network for accurate data analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!