This article presents the analysis of the deformability, structure and properties of the AZ61 cast magnesium alloy on the example of a new forging process of aircraft mount forgings. It was assumed that their production process would be based on drop forging on a die hammer. Two geometries of preforms, differing in forging degree, were used as the billet for the forging process. It was assumed that using a cast, unformed preform positively affects the deformability of hard-deformable magnesium alloys and flow kinematics during their forging and reduces the number of operations necessary to obtain the correct product. Numerical analysis of the proposed new technology was carried out using DEFORM 3D v.11, a commercial program dedicated to analyzing metal forming processes. The simulations were performed in the conditions of spatial strain, considering the full thermomechanical analysis. The obtained results of numerical tests confirmed the possibility of forming the forgings of aviation mounts from the AZ61 cast magnesium alloy with the proposed technology. They also allowed us to obtain information about the kinematics of the material flow during forming and process parameters, such as strain intensity distribution, temperatures, Cockcroft-Latham criterion and forming energy. The proposed forging process on a die hammer was verified in industrial conditions. The manufactured forgings of aircraft mounts made of AZ61 magnesium alloy were subjected to qualitative tests in terms of their structure, conductivity and mechanical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156473PMC
http://dx.doi.org/10.3390/ma14102593DOI Listing

Publication Analysis

Top Keywords

magnesium alloy
16
forging process
16
az61 cast
12
cast magnesium
12
analysis deformability
8
deformability structure
8
structure properties
8
properties az61
8
process aircraft
8
aircraft mounts
8

Similar Publications

This work employs the femtosecond laser-ablation spark-induced breakdown spectroscopy (fs-LA-SIBS) technique for the quantitative analysis of magnesium alloy samples. It integrates four machine learning models: Random Forest (RF), Support Vector Machine (SVM), Partial Least Squares (PLS), and -Nearest Neighbors (KNN) to evaluate their classification performance in identifying magnesium alloys. In regression tasks, the models aim to predict the content of four elements: manganese (Mn), aluminum (Al), zinc (Zn), and nickel (Ni) in the samples.

View Article and Find Full Text PDF

In this research, tartaric acid was used to enhance the hydroxyapatite coating on AZ31 Mg alloy substrate through post-treatment and direct addition methods, and the corrosion resistance and biological activity of the samples were investigated. The parameters of concentration, immersion time, and pH of the coating solution were optimized by Electrochemical Impedance Spectroscopy (EIS) and Direct Current (DC) Polarization techniques. According to EIS results in the post-treatment method, tartaric acid with a concentration of 1 g/L, pH = 9 and immersion time of 2 min, increased the corrosion resistance of hydroxyapatite coating from 3630 to about 18,763 Ω.

View Article and Find Full Text PDF

This study presents a comparative analysis of the influence of Ce-Gd and Gd-Y additions on the microstructural evolution, mechanical properties, and electrochemical behavior of extruded Mg-3Zn-Mn-Ca alloy rods. Despite the frequent incorporation of Gd, Y, and Ce as alloying elements in magnesium alloys, the systematic examination of their combined effects on Mg-Zn alloys has been limited. Our findings reveal that both Gd-Ce and Gd-Y additions significantly enhance the mechanical properties of Mg-3Zn-Mn-Ca alloy, although through differing mechanisms.

View Article and Find Full Text PDF

Damage mechanisms are a key factor in materials science and are essential for understanding and predicting the behavior of materials under complex loading conditions. In this paper, the influence of different directions, different rates and different model parameters on the mechanical behavior of AZ31 magnesium alloy during the tensile process is investigated based on the secondary development of the VUMAT user subroutine based on the GTN damage model and verified by the tensile experiments at different loading rates and in different directions. The results show that AZ31 magnesium alloy exhibits significant differences in mechanical properties in radial and axial stretching, where the yield strength is lower in the radial direction than in the axial direction, and the elongation is the opposite.

View Article and Find Full Text PDF

Crystal Plasticity Simulation of Cyclic Behaviors of AZ31B Magnesium Alloys via a Modified Dislocation-Twinning-Detwinning Model.

Materials (Basel)

December 2024

Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China.

In this study, a probabilistic model within the dislotwin constitutive framework of DAMASK (the Düsseldorf Advanced Material Simulation Kit) was established to describe the cyclic loading behaviors of AZ31B magnesium alloys. Considering the detwinning procedure within the twinned region, this newly developed dislocation-twinning-detwinning model was employed to accurately simulate stress-strain behaviors of AZ31B magnesium alloys throughout tension-compression-tension (T-C-T) cycle loading. The investigations revealed that the reduction in yield stress during the reverse loading process was attributed to the active operation of twinning and detwinning modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!