Convolutional neural networks (CNNs) have achieved significant breakthroughs in various domains, such as natural language processing (NLP), and computer vision. However, performance improvement is often accompanied by large model size and computation costs, which make it not suitable for resource-constrained devices. Consequently, there is an urgent need to compress CNNs, so as to reduce model size and computation costs. This paper proposes a layer-wise differentiable compression (LWDC) algorithm for compressing CNNs structurally. A differentiable selection operator OS is embedded in the model to compress and train the model simultaneously by gradient descent in one go. Instead of pruning parameters from redundant operators by contrast to most of the existing methods, our method replaces the original bulky operators with more lightweight ones directly, which only needs to specify the set of lightweight operators and the regularization factor in advance, rather than the compression rate for each layer. The compressed model produced by our method is generic and does not need any special hardware/software support. Experimental results on CIFAR-10, CIFAR-100 and ImageNet have demonstrated the effectiveness of our method. LWDC obtains more significant compression than state-of-the-art methods in most cases, while having lower performance degradation. The impact of lightweight operators and regularization factor on the compression rate and accuracy also is evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155900PMC
http://dx.doi.org/10.3390/s21103464DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural networks
8
layer-wise differentiable
8
differentiable compression
8
model size
8
size computation
8
computation costs
8
lightweight operators
8
operators regularization
8
regularization factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!