Global warming is extending growing seasons in temperate zones, yielding earlier wildflower blooms. Short-term field experiments with non-social bees showed that adult emergence is responsive to nest substrate temperatures. Nonetheless, some posit that global warming will decouple bee flight and host bloom periods, leading to pollination shortfalls and bee declines. Resolving these competing scenarios requires evidence for bees' natural plasticity in their annual emergence schedules. This study reports direct observations spanning 12-24 years for annual variation in the earliest nesting or foraging activities by 1-4 populations of four native ground-nesting bees: (Andrenidae) (Halictidae) and () (Apidae). Calendar dates of earliest annual bee activity ranged across 25 to 45 days, approximating reported multi-decadal ranges for published wildflower bloom dates. Within a given year, the bee emerged in close synchrony at multiple local aggregations, explicable if meteorological factors cue emergence. Emergence dates were relatable to thermal cues, such as degree day accumulation, soil temperature at nesting depth, and the first pulse of warm spring air temperatures. Similar seasonal flexibilities in bee emergence and wildflower bloom schedules bodes well for bees and bloom to generally retain synchrony despite a warming climate. Future monitoring studies can benefit from several simple methodological improvements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155920 | PMC |
http://dx.doi.org/10.3390/insects12050457 | DOI Listing |
Comp Biochem Physiol C Toxicol Pharmacol
January 2025
Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka-city 020-8551, Japan.
As temperatures rise due to increasingly severe global warming, the effect of high temperatures on wildlife, including green sea turtles, is one of the issues that must be addressed to ensure the conservation of biodiversity. In the current study, we found that green sea turtle cell death due to apoptosis occurred at 37 °C, which suppressed cell proliferation. We also found that high temperature-induced heat stress led to the accumulation of DNA damage in green sea turtle cells.
View Article and Find Full Text PDFSci Total Environ
January 2025
Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China. Electronic address:
Increased global nitrogen (N) and phosphorus (P) inputs caused by human activities can significantly impact methane (CH) uptake in terrestrial ecosystems. Forest soils, as the largest CH sink among terrestrial ecosystems, play a crucial role in mitigating global warming. However, the effects of long-term N and P additions on CH sink and the associated microbial mechanisms in subtropical forest soils remain unclear.
View Article and Find Full Text PDFJ Therm Biol
January 2025
College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China. Electronic address:
Climate warming and frequent incidents of extreme high temperatures are serious global concerns. Heat stress induced by high temperature has many adverse effects on animal physiology, especially in aquatic poikilotherms. Chinese mitten crab (Eriocheir sinensis) is sensitive to high temperatures, this study evaluated the harmful effects of heat stress on the neurotoxicity, intestinal health, microbial diversity, and metabolite profiles.
View Article and Find Full Text PDFEcology
January 2025
Research Department, Holden Arboretum, Kirtland, Ohio, USA.
Shifting community assembly dynamics are an underappreciated mechanism by which warming will alter plant community composition. Germination timing (which can determine the order in which seedlings emerge within a community) will likely shift unevenly across species in response to warming. In seasonal environments where communities reassemble at the beginning of each growing season, changes in germination timing could lead to changes in seasonal priority effects, and ultimately community composition.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.
Natural gas (NG) is a promising alternative to diesel for sustainable transport, potentially reducing GHG and air quality emissions significantly. However, the GHG benefits hinge on managing methane slip, the unburned methane in the exhaust of NG engines, which carries a significant global warming potential. The CH slip from NG engines is highly dependent on engine type and operation, and effective greenhouse gas emission mitigation requires that the actual operation of real-world engines is monitored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!