Femtosecond Laser Drilling of Cylindrical Holes for Carbon Fiber-Reinforced Polymer (CFRP) Composites.

Molecules

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 10068, China.

Published: May 2021

Ultrafast laser drilling has been proven to effectively reduce the heat-affected zone (HAZ) of carbon fiber-reinforced polymer (CFRP) composites. However, previous research mainly focused on the effects of picosecond laser parameters on CFRP drilling. Compared with a picosecond laser, a femtosecond laser can achieve higher quality CFRP drilling due to its smaller pulse width, but there are few studies on the effects of femtosecond laser parameters on CFRP drilling. Moreover, the cross-sectional taper of CFRP produced by laser drilling is very large. This paper introduces the use of the femtosecond laser to drill cylindrical holes in CFRP. The effect of laser power, rotational speed of the laser, and number of spiral passes on HAZ and ablation depth in circular laser drilling and spiral laser drilling mode was studied, respectively. It also analyzed the forming process of the drilling depth in the spiral drilling mode and studied the influence of laser energy and drilling feed depth on the holes' diameters and the taper. The experimental results show that the cylindrical hole of CFRP with a depth-to-diameter ratio of about 3:1 (taper < 0.32∘, HAZ < 10 m) was obtained by using femtosecond laser and a spiral drilling apparatus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155999PMC
http://dx.doi.org/10.3390/molecules26102953DOI Listing

Publication Analysis

Top Keywords

femtosecond laser
20
laser drilling
20
laser
13
drilling
12
cfrp drilling
12
cylindrical holes
8
carbon fiber-reinforced
8
fiber-reinforced polymer
8
cfrp
8
polymer cfrp
8

Similar Publications

An NIR-II Two-Photon Excitable AIE Photosensitizer for Precise and Efficient Treatment of Orthotopic Small-Size Glioblastoma.

Adv Mater

December 2024

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China.

The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation.

View Article and Find Full Text PDF

The generation of laser-induced periodic surface structures (LIPSS) using femtosecond lasers facilitates the engineering of material surfaces with tailored functional properties. Numerous aspects of their complex formation process are still under debate, despite intensive theoretical and experimental research in recent decades. This particularly concerns the challenge of verifying approaches based on electromagnetic effects or hydrodynamic processes by experiment.

View Article and Find Full Text PDF

Rapid Sintering Method for Preparing Matrix-Matched Reference Materials in LA-MC-ICP-MS - An Example of Hafnium.

Anal Chem

December 2024

State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.

Matrix effects can significantly bias Hf isotopic ratios in situ Hf isotope analyses using laser ablation (LA-) multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS), necessitating the use of matrix-matched reference materials for accurate microanalysis. This work introduces a novel fast hot-pressing (FHP) sintering method to produce such reference materials efficiently for in situ analysis. By optimizing sintering temperatures, FHP technology enables the rapid preparation of in situ analysis reference materials with dense structures and homogeneous Hf isotopic compositions.

View Article and Find Full Text PDF

Micromodification in bulk undoped polymethylmethacrylate (PMMA) by single focused (numerical aperture (NA) = 0.25), 1030-nm 250-fs laser pump pulses was explored by pump self-transmittance; optical, 3D-scanning confocal photoluminescence (PL); Raman micro-spectroscopy; and optical polarimetric and interferometric microscopy. Starting from the threshold pulse energy  = 0.

View Article and Find Full Text PDF

We demonstrate that amplitude modulation of a high-peak-power femtosecond laser pulse allows to change fundamentally the frequency-angular structure (FAS) of the supercontinuum formed during the filamentation in both molecular and atomic gases. Particularly, modulation with a 4-hole mask forms an inverted pattern of conical emission (CE) with its predominance in the Stokes wing of the pulse spectrum. We explain this phenomenon as a joint effect of self-phase modulation and temporal pulse splitting of interfering beamlets formed by the modulating mask.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!