Quantifying changes in bacteria cells in the presence of antibacterial treatment is one of the main challenges facing contemporary medicine; it is a challenge that is relevant for tackling issues pertaining to bacterial biofilm formation that substantially decreases susceptibility to biocidal agents. Three-dimensional label-free imaging and quantitative analysis of bacteria-photosensitizer interactions, crucial for antimicrobial photodynamic therapy, is still limited due to the use of conventional imaging techniques. We present a new method for investigating the alterations in living cells and quantitatively analyzing the process of bacteria photodynamic inactivation. Digital holographic tomography (DHT) was used for in situ examination of the response of and to the accumulation of the photosensitizers immobilized in the copolymer revealed by the changes in the 3D refractive index distributions of single cells. Obtained results were confirmed by confocal microscopy and statistical analysis. We demonstrated that DHT enables real-time characterization of the subcellular structures, the biophysical processes, and the induced local changes of the intracellular density in a label-free manner and at sub-micrometer spatial resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151141PMC
http://dx.doi.org/10.3390/ijms22105068DOI Listing

Publication Analysis

Top Keywords

bacteria single-cell
4
single-cell photosensitizer
4
photosensitizer interaction
4
interaction revealed
4
revealed quantitative
4
quantitative phase
4
phase imaging
4
imaging quantifying
4
quantifying changes
4
changes bacteria
4

Similar Publications

Dextran sodium sulfate-induced colitis alters the proportion and composition of replicating gut bacteria.

mSphere

December 2024

Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.

The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both and in the dextran sodium sulfate (DSS) mouse model of colitis.

View Article and Find Full Text PDF

Elevated Toxicity and High-Risk Impacts of Small Polycyclic Aromatic Hydrocarbon Clusters on Microbes Compared to Large Clusters.

Environ Sci Technol

December 2024

Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China.

Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants that can accumulate in microorganisms, posing significant ecological risks. While previous studies primarily focused on PAH concentrations, the impacts of PAH self-clustering have been largely overlooked, which will lead to inaccurate assessments of their ecological risks. This study evaluates the toxic effects of four prevalent PAH clusters on microbes with an emphasis on comparing the cluster sizes.

View Article and Find Full Text PDF

Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions.

View Article and Find Full Text PDF

Unlabelled: Antimicrobial peptides (AMPs) have long been considered as potential agents against non-growing, dormant cells due to their membrane-targeted action, which is largely independent of the cell's growth state. However, the relationship between the action of AMPs and the physiological state of their target cells has been unclear, with recent reports offering conflicting views on the efficacy of AMPs against bacteria in a stationary phase. In this study, we employ single-cell approaches combined with population-level experiments to examine the action of human LL37 peptides against cells in different growth phases.

View Article and Find Full Text PDF

Unlabelled: strain E264 ( E264) and close relatives stochastically duplicate a 208.6 kb region of chromosome I via RecA-dependent recombination between two nearly identical insertion sequence elements. Because homologous recombination occurs at a constant, low level, populations of E264 are always heterogeneous, but cells containing two or more copies of the region (Dup+) have an advantage, and hence predominate, during biofilm growth, while those with a single copy (Dup-) are favored during planktonic growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!