Montelukast is a weak acid drug characterized by its low solubility in the range of pH 1.2 to 4.5, which may lead to dissolution-limited absorption. The aim of this paper is to develop an in vivo predictive dissolution method for montelukast and to check its performance by establishing a level-A in vitro-in vivo correlation (IVIVC). During the development of a generic film-coated tablet formulation, two clinical trials were done with three different experimental formulations to achieve a similar formulation to the reference one. A dissolution test procedure with a flow-through cell (USP IV) was used to predict the in vivo absorption behavior. The method proposed is based on a flow rate of 5 mL/min and changes of pH mediums from 1.2 to 4.5 and then to 6.8 with standard pharmacopoeia buffers. In order to improve the dissolution of montelukast, sodium dodecyl sulfate was added to the 4.5 and 6.8 pH mediums. Dissolution profiles in from the new method were used to develop a level-A IVIVC. One-step level-A IVIVC was developed from dissolution profiles and fractions absorbed obtained by the Loo-Riegelman method. Time scaling with Levy's plot was necessary to achieve a linear IVIVC. One-step differential equation-based IVIVC was also developed with a time-scaling function. The developed method showed similar results to a previously proposed biopredictive method for montelukast, and the added value showed the ability to discriminate among different release rates in vitro, matching the in vivo clinical bioequivalence results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151440PMC
http://dx.doi.org/10.3390/pharmaceutics13050690DOI Listing

Publication Analysis

Top Keywords

vitro-in vivo
8
method montelukast
8
method proposed
8
dissolution profiles
8
level-a ivivc
8
ivivc one-step
8
ivivc developed
8
dissolution
6
method
6
vivo
5

Similar Publications

Concentrations, composition profiles, and in vitro-in silico-based mixture risk assessment of bisphenol A and its analogs in plant-based foods.

Environ Int

December 2024

Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan. Electronic address:

The substitution of bisphenol A (BPA) with structurally similar analogs has raised concerns due to their comparable estrogenic activities. Considering the high consumption of plant-based foods, assessing the risks posed by bisphenols (BPs) in such dietary sources is essential. However, limited exposure and animal toxicological data on BP analogs hinder comprehensive risk assessments.

View Article and Find Full Text PDF

The motility of macrophages in response to microenvironment stimuli is a hallmark of innate immunity, where macrophages play pro-inflammatory or pro-reparatory roles depending on their activation status during wound healing. Cell size and shape have been informative in defining macrophage subtypes. Studies show pro and anti-inflammatory macrophages exhibit distinct migratory behaviors, in vitro, in 3D and in vivo but this link has not been rigorously studied.

View Article and Find Full Text PDF

Cystic echinococcosis (CE) is a worldwide zoonotic public health issue. The reasons for this include a lack of specific therapy options, increasing antiparasitic drug resistance, a lack of control strategies, and the absence of an approved vaccine. The aim of the current study is to develop a multiepitope vaccine against CE by in-silico identification and using different Antigen B subunits.

View Article and Find Full Text PDF

Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).

View Article and Find Full Text PDF

Therapeutic potential inhibitor for dipeptidyl peptidase IV in diabetic type 2: in silico approaches.

3 Biotech

January 2025

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia.

Diabetes mellitus (DM) is a metabolic disease marked by an excessive rise in blood sugar (glucose) levels caused by a partial or total absence of insulin production, combined with alterations in the metabolism of proteins, lipids, and carbohydrates. The International Diabetes Federation estimates that 425 million individuals globally had diabetes in 2017 which will be 629 million by 2045. Several medications are used to treat DM, but they have limitations and side effects including weight gain, nausea, vomiting, and damage to blood vessels and kidneys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!