Duchenne muscular dystrophy is a progressive and lethal X-linked recessive neuromuscular disease caused by mutations in the dystrophin gene. It has a high rate of diagnostic delay; early diagnosis and treatment are often not possible due to delayed recognition of muscle weakness and lack of effective treatments. Current treatments based on genetic therapy can improve clinical results, but treatment must begin as early as possible before significant muscle damage. Therefore, early diagnosis and rehabilitation of Duchenne muscular dystrophy are needed before symptom aggravation. Creatine kinase is a diagnostic marker of neuromuscular disorders. Herein, the authors report a case of an infant patient with Duchenne muscular dystrophy with a highly elevated creatine kinase level but no obvious symptoms of muscle weakness. The patient was diagnosed with Duchenne muscular dystrophy via next-generation sequencing and chromosomal microarray analysis to identify possible inherited metabolic and neuromuscular diseases related to profound hyperCKemia. The patient is enrolled in a rehabilitation program and awaits the approval of the genetic treatment in Korea. This is the first report of an infantile presymptomatic Duchenne muscular dystrophy diagnosis using next-generation sequencing and chromosomal microarray analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151037 | PMC |
http://dx.doi.org/10.3390/children8050377 | DOI Listing |
Am J Pathol
January 2025
Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095. Electronic address:
Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a CTLA4-Ig fusion protein that blocks costimulatory signals required for activation of T-cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T-cells, macrophages and antigen presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers.
View Article and Find Full Text PDFPLoS One
January 2025
Little Steps Association for Children with Duchenne Muscular Dystrophy and Becker Muscular Dystrophy, Kefar Saba, Israel.
For individuals with Duchenne or Becker muscular dystrophy (DMD and BMD, respectively), transitioning to adulthood presents significant challenges. Although considerable attention has been given to facilitating medical transitions due to the complexity of these conditions, less focus has been placed on other aspects of the transition, such as achieving independence. This study assessed the transition needs of people with DMD or BMD, exploring various domains including health, education, employment, living arrangements, transportation, daily activities, and independent personal life.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, United States of America.
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!