Characterisation and FE Modelling of the Sorption and Swelling Behaviour of Polyamide 6 in Water.

Polymers (Basel)

Institute of Polymer Materials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany.

Published: May 2021

Polyamide 6 (PA6) is known to absorb water from its environment due to its chemical structure. This water absorption leads to a change in the mechanical properties as well as an increase in volume (swelling) of the polyamide. In the present work, the sorption and swelling behaviour of polyamide 6 in different conditioning environments was experimentally investigated on different part geometries to develop a finite element (FE) method on the basis of the measured data that numerically calculates the sorption and swelling behaviour. The developed method includes two analyses using the Abaqus software. Both the concentration-dependent implementation of the simulation parameters and the calculation of swelling-induced stresses are performed. This enables the modelling of the sorption curves until maximum saturation is reached and the simulation of the characteristic S-shaped swelling curves. Therefore, the developed methodology represents an efficient method for predicting the sorption and swelling behaviour of polyamide 6 parts during conditioning in a water bath. The determined properties provide the basis for the development of an FE-based simulation environment to take moisture absorption into account during the part design. This enables the calculation of moisture-induced swelling processes and the resulting initial stresses in a given part.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124584PMC
http://dx.doi.org/10.3390/polym13091480DOI Listing

Publication Analysis

Top Keywords

sorption swelling
16
swelling behaviour
16
behaviour polyamide
12
modelling sorption
8
swelling
7
sorption
5
polyamide
5
characterisation modelling
4
behaviour
4
water
4

Similar Publications

Hybrid Chitosan Biosorbents: Tunable Adsorption at Surface and Micropore Domains.

Biomimetics (Basel)

November 2024

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.

Herein, we report a study that provides new insight on the knowledge gaps that relate to the role of biopolymer structure and adsorption properties for chitosan adsorbents that are cross-linked with glutaraldehyde. The systematic modification of chitosan cross-linked with glutaraldehyde (CG) and its quaternized forms (QCG) was studied in relation to the reaction conditions: mole ratios of reactants and pH conditions. Complementary adsorbent characterization employed C NMR/FTIR spectroscopy, TGA and DSC, point-zero-charge (PZC), solvent swelling, and sorption studies using selected dye probes.

View Article and Find Full Text PDF

Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.

View Article and Find Full Text PDF

Functionalization of layered double hydroxides on bentonite for cesium and iodine retention in high-level radioactive waste disposal.

Chemosphere

February 2025

Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea; Division of Environmental Science & Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea. Electronic address:

Bentonite is regarded as an adequate buffer material in deep geological repositories and its swelling properties serve to prevent the penetration of groundwater into the repository and to minimize the release of radionuclides. However, bentonite is rarely effective in removing anionic radionuclides due to its permanent negative surface charge. The aim of this study was to enhance the anion removal ability of bentonite by incorporating layered double hydroxides (LDH) with a high anion exchange capacity.

View Article and Find Full Text PDF

Influence of Water Sorption on Ionic Conductivity in Polyether Electrolytes at Low Hydration.

ACS Macro Lett

December 2024

Department of Chemical Engineering, The University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Ion-containing polymers are subject to a wide range of hydration conditions across electrochemical and water treatment applications. Significant work on dry polymer electrolytes for batteries and highly swollen membranes for water purification has informed our understanding of ion transport under extreme conditions. However, knowledge of intermediate conditions (i.

View Article and Find Full Text PDF

Cellulose consolidated with polyethylene glycol: The nanoscale mechanisms revealed by hybrid Monte Carlo/molecular dynamics modeling.

Int J Biol Macromol

January 2025

Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zurich, 8093 Zurich, Switzerland. Electronic address:

Polyethylene glycol (PEG) consolidation treatment is a widely used conservation strategy for wooden culture relics. However, the consolidation mechanism of PEG is still open to interpretation. PEG-cellulose, the representative component of wood cell wall, interactions are governed by various coupled multi-scale mechanisms which require nano-scale investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!