The progressive rise in atmospheric CO concentrations and temperature associated with climate change is predicted to have a major impact on the productivity and quality of food crops. Therefore, food security is highly dependent on climate change. Following a survey with 60 bread wheat genotypes, here we investigated the genetic variation in grain yield and nutritional quality among 10 of these genotypes grown under elevated CO and temperature. With this purpose, the biomass production, grain yield-related traits, the grain concentration of starch, total protein, phenolic compounds, and mineral nutrients, together with the total antioxidant capacity, were determined. Variation among genotypes was found for almost all the studied traits. Higher grain and ear numbers were associated with increased grain yield but decreased grain total protein concentration and minerals such as Cu, Fe, Mg, Na, P, and Zn. Mineral nutrients were mainly associated with wheat biomass, whereas protein concentration was affected by plant biomass and yield-related traits. Associations among different nutrients and promising nutrient concentrations in some wheat genotypes were also found. This study demonstrates that the exploration of genetic diversity is a powerful approach, not only for selecting genotypes with improved quality, but also for dissecting the effect of the environment on grain yield and nutritional composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224326PMC
http://dx.doi.org/10.3390/plants10061043DOI Listing

Publication Analysis

Top Keywords

grain yield
16
grain
9
nutritional quality
8
grown elevated
8
climate change
8
wheat genotypes
8
yield nutritional
8
yield-related traits
8
total protein
8
mineral nutrients
8

Similar Publications

Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.

View Article and Find Full Text PDF

Combined effects of climate stressors and soil arsenic contamination on metabolic profiles and productivity of rice (Oryza sativa L.).

Sci Total Environ

January 2025

Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

Rice productivity and quality are increasingly at risk in arsenic (As) affected areas, challenge that is expected to worsen under changing climatic conditions. Free-Air Concentration Enrichment experiments revealed that eCO, eO, and eTemp, whether acting individually or in combination with low and high As irrigation, significantly impact rice yield and grain quality. Elevated CO₂ significantly increased shoot biomass, with minimal impact on root biomass, except under low As irrigation conditions.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

This study presents a comparative analysis of the influence of Ce-Gd and Gd-Y additions on the microstructural evolution, mechanical properties, and electrochemical behavior of extruded Mg-3Zn-Mn-Ca alloy rods. Despite the frequent incorporation of Gd, Y, and Ce as alloying elements in magnesium alloys, the systematic examination of their combined effects on Mg-Zn alloys has been limited. Our findings reveal that both Gd-Ce and Gd-Y additions significantly enhance the mechanical properties of Mg-3Zn-Mn-Ca alloy, although through differing mechanisms.

View Article and Find Full Text PDF

Interface Microstructure and Properties of 42CrMo/Cr5 Vacuum Billet Forged Composite Roll.

Materials (Basel)

December 2024

State Key Laboratory of Roll Composite Materials, Sinosteel Xing Tai Mechanical Roll Co., Ltd., No. 1 Xinxing West Street, Xingtai 054000, China.

Composite roll produced through casting methods typically remain in the as-cast state after forming. During the preparation process, extended exposure to high temperatures often results in microstructural coarsening at the interface and surface layers, restricting their mechanical performance. To overcome this limitation, we developed a novel vacuum billet forging process for the fabrication of composite rolls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!