Tokamak diagnostic window glass is an indispensable optical medium in fusion research. The transmittance of the device affects the optical performance and accuracy of the diagnostic system. Especially, the window glass serves as the entrance of the light source while performing the sealing function for the active diagnosis method represented by Thomson scattering diagnostics. In this work, we studied the influence of the laser irradiation and tokamak discharge on the EAST (Experimental Advanced Superconducting Tokamak) Thomson scattering diagnostic borosilicate glass window. Using X-ray photoelectron spectroscopy (XPS) and Raman scattering, we found that carbon-based impurities in the device aggravated the film damage due to laser irradiation, reducing the performance of the coating of the glass. Besides, the laser and the various rays of tokamak discharge generated many point defects in the glass, increasing the light absorption of the glass. These two factors caused the glass transmittance to drop significantly (from 99.99% to 77.62%). In addition, the long-term laser irradiation primarily reduced the transmittance, while environmental rays had a minor impact on the same. This work provides valuable insights into the selection and effective use of glass in optics-based diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196587 | PMC |
http://dx.doi.org/10.3390/ma14112702 | DOI Listing |
Neurospine
December 2024
Department of Neurosurgery, Tokyo Medical University, Sendai, Japan.
Our extensive basic research on photodynamic therapy (PDT) application in models of intracranial malignant astrocytoma led to its clinical application for intracranial malignant astrocytoma in Japan. Having considered the safety and effectiveness of this pathology, we initiate a first-in-human clinical study of PDT for spinal cord malignant astrocytoma. This study has an open-label, single-arm design.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.
Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.
Mass Spectrom (Tokyo)
December 2024
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.
Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.
View Article and Find Full Text PDFCureus
December 2024
Department of Dental Sciences, Faculty of Medicine, University of Liege, Liege, BEL.
Background Fracture of nickel-titanium (Ni-Ti) instruments in root canals is commonly associated with compromised outcomes in endodontic treatment. There is no single, universally accepted approach for managing this complication. The objective of this study is to evaluate the effectiveness of an Nd: YAP laser-assisted protocol in removing fractured Ni-Ti files in teeth with minimal root curvature (less than 15 degrees).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
Background: Developing carrier-free nanomedicines via self-assembly of two antitumor drug molecules is a potential strategy for enhancing the combination treatment of tumors. Similarly, conventional chemotherapy combined with photodynamic therapy may synergistically improve the antitumor effect while minimizing the adverse reactions associated with antitumor treatment. Hyaluronic acid (HA) can bind to overexpressed HA receptors on the tumor cell surface, increasing cell internalization and resulting in good tumor-targeting properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!