Uterine carcinoma (UC) is the most common gynecologic malignancy in the United States. mutant UCs cause a disproportionate number of deaths due to limited therapies for these tumors and the lack of mechanistic understanding of their fundamental vulnerabilities. Here we sought to understand the functional and therapeutic relevance of mutations in UC. We functionally profiled targetable dependent DNA damage repair and cell cycle control pathways in a panel of mutant UC cell lines and patient-derived organoids. There were no consistent defects in DNA damage repair pathways. Rather, most models demonstrated dependence on defective G2/M cell cycle checkpoints and subsequent upregulation of Aurora kinase-LKB1-p53-AKT signaling in the setting of baseline mitotic defects. This combination makes them sensitive to Aurora kinase inhibition. Resistant lines demonstrated an intact G2/M checkpoint, and combining Aurora kinase and WEE1 inhibitors, which then push these cells through mitosis with Aurora kinase inhibitor-induced spindle defects, led to apoptosis in these cases. Overall, this work presents Aurora kinase inhibitors alone or in combination with WEE1 inhibitors as relevant mechanism driven therapies for mutant UCs. Context specific functional assessment of the G2/M checkpoint may serve as a biomarker in identifying Aurora kinase inhibitor sensitive tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125555 | PMC |
http://dx.doi.org/10.3390/cancers13092195 | DOI Listing |
Sci Rep
January 2025
Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.
Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania.
Aurora kinase B (AurB) is a pivotal regulator of mitosis, making it a compelling target for cancer therapy. Despite significant advances in protein kinase inhibitor development, there are currently no AurB inhibitors readily available for therapeutic use. This study introduces a machine learning-assisted drug repurposing framework integrating quantitative structure-activity relationship (QSAR) modeling, molecular fingerprints-based classification, molecular docking, and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21511, Egypt.
Background/objectives: Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India.
Epstein-Barr virus (EBV), an oncogenic gamma-herpesvirus, belongs to group 1 carcinogen and is implicated in various cancers, including gastric cancer. Aurora Kinase A is a major mitotic protein kinase that regulates mitotic progression; overexpression and hyperactivation of AURKA commonly promote genomic instability in many tumours. However, the relationship of functional residues of AURKA and EBV in gastric cancer progression remains unknown.
View Article and Find Full Text PDFCells
January 2025
The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada.
Epithelial ovarian cancer (EOC) exhibits a unique mode of metastasis, involving spheroid formation in the peritoneum. Our research on EOC spheroid cell biology has provided valuable insights into the signaling plasticity associated with metastasis. We speculate that EOC cells modify their biology between tumour and spheroid states during cancer dormancy, although the specific mechanisms underlying this transition remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!