Soil and Leaf Nutrients Drivers on the Chemical Composition of the Essential Oil of (Ruiz & Pav.) A. DC. from Ecuador.

Molecules

Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), Calle M. Champagnat s/n, Loja 1101608, Ecuador.

Published: May 2021

Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of ; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155955PMC
http://dx.doi.org/10.3390/molecules26102949DOI Listing

Publication Analysis

Top Keywords

soil leaf
12
leaf nutrients
12
chemical composition
12
soil- leaf
12
composition essential
8
essential oil
8
leaf chemical
8
chemical elements
8
secondary metabolites
8
chemical
6

Similar Publications

Plantago atrata Hoppe is a high-altitude mountain plant exposed to harsh environmental factors. This study aims to elucidate the ecological, phytochemical and pharmacological characteristics of this lesser-known plantain. Despite nutrient-poor peat soil, the leaves of P.

View Article and Find Full Text PDF

Functional and genomic analyses of plant growth promoting traits in Priestia aryabhattai and Paenibacillus sp. isolates from tomato rhizosphere.

Sci Rep

January 2025

Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina.

This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo.

View Article and Find Full Text PDF

Katsumada galangal seed ( K. Schum) is an important member of the Zingiberaceae family, with both medicinal value and culinary applications (Park et al. 2020).

View Article and Find Full Text PDF

First report of strawberry root rot caused by in China.

Plant Dis

January 2025

Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.

Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.

View Article and Find Full Text PDF

Long-term nitrogen fertilization alters the partitioning of amino acids between citrus leaves and fruits.

Front Plant Sci

January 2025

Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China.

Introduction: The growth of evergreen fruit trees is influenced by the interaction of soil nitrogen (N) and leaf amino acid contents. However, information on free amino acid contents in leaves of fruiting and non-fruiting branches during long-term N fertilizer application remains scarce.

Methods: Here, a four-year field experiment (2018-2021) in a citrus orchard revealed consistently lower total N and amino acid contents in leaves of fruiting compared to non-fruiting branches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!