When myocardial function is compromised as in heart failure (HF), there is activation of the sympathetic nervous system with elevated circulating catecholamine levels. These catecholamines activate cardiac and extra-cardiac adrenergic receptors (ARs). Interest in secreted extracellular vesicles (EVs) from the heart is growing and in HF, it is not known whether excessive activation of α- or β-adrenergic receptors (ARs) could induce specific changes in EV content. In this study, we have evaluated, by next generation sequencing, the small RNA content, including micro-RNAs (miRs), of circulating EVs of mice exposed to chronic selective α- or β- AR stimulation. EVs from mouse blood were purified by differential ultracentrifugation resulting in EVs with an average size of 116.6 ± 4.8 nm that by immunoblotting included protein markers of EVs. We identified the presence of miRs in blood EVs using miR-21-5p and -16-5p real-time PCR as known constituents of blood exosomes that make up a portion of EVs. We next performed next generation sequencing (NGS) of small non-coding RNAs found in blood EVs from mice following 7 days of chronic treatment with isoproterenol (ISO) or phenylephrine (PE) to stimulate α- or β-ARs, respectively. PE increased the percent of genomic repeat region reads and decreased the percent of miR reads. In miR expression analysis, PE and ISO displayed specific patterns of miR expression that suggests differential pathway regulation. The top 20 KEGG pathways predicted by differential expressed miRs show that PE and ISO share 11 of 20 pathways analyzed and reveal also key differences including three synapse relative pathways induced by ISO relative to PE treatment. Both α-and β-AR agonists can alter small RNA content of circulating blood EVs/exosomes including differential expression and loading of miRs that indicate regulation of distinct pathways. This study provides novel insight into chronic sympathetic nervous system activation in HF where excessive catecholamines may not only participate in pathological remodeling of the heart but alter other organs due to secretion of EVs with altered miR content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156306 | PMC |
http://dx.doi.org/10.3390/cells10051211 | DOI Listing |
Nat Cell Biol
January 2025
Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
Plasticity is needed during development and homeostasis to generate diverse cell types from stem and progenitor cells. Following differentiation, plasticity must be restricted in specialized cells to maintain tissue integrity and function. For this reason, specialized cell identity is stable under homeostatic conditions; however, cells in some tissues regain plasticity during injury-induced regeneration.
View Article and Find Full Text PDFMed Mycol
January 2025
Mycology Department, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, Paris, France.
Paracoccidioides are dimorphic fungal pathogens and the etiological agents of paracoccidioidomycosis (PCM). This severe systemic mycosis is restricted to Latin America, where it has been historically endemic. Currently, PCM presents the fewest diagnostic tools available when compared to other endemic mycoses.
View Article and Find Full Text PDFJ Vet Intern Med
January 2025
College of Medicine and Veterinary Medicine, The Royal (Dick) School of Veterinary Studies, Hospital for Small Animals, Easter Bush Campus, University of Edinburgh, Midlothian, UK.
Background: Fecal microbiota transplantation (FMT) has been advocated as a treatment for chronic enteropathy (CE) in dogs. However, so far only short-term clinical effects have been reported whereas the effect on the microbiota remains unexplored.
Hypothesis/objectives: Assess if a single FMT enema can lead to clinical improvement in dogs with CE when accompanied by presumed favorable microbiota changes.
Nucleic Acids Res
January 2025
Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil. Electronic address:
Background And Aims: Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!