Spatial light modulators (SLMs) have been widely used to achieve dynamic control of optical traps. Often, holographic optical tweezers have been presumed to provide nanometer or sub-nanometer positioning accuracy. It is known that some features concerning the digitalized structure of SLMs cause a loss in steering efficiency of the optical trap, but their effect on trap positioning accuracy has been scarcely analyzed. On the one hand, the SLM look-up-table, which we found to depend on laser power, produces positioning deviations when the trap is moved at the micron scale. On the other hand, phase quantization, which makes linear phase gratings become phase staircase profiles, leads to unexpected local errors in the steering angle. We have tracked optically trapped microspheres with sub-nanometer accuracy to study the effects on trap positioning, which can be as high as 2 nm in certain cases. We have also implemented a correction strategy that enabled the reduction of errors down to 0.3 nm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156812 | PMC |
http://dx.doi.org/10.3390/mi12050559 | DOI Listing |
NPJ Syst Biol Appl
January 2025
Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.
Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, USA.
Purpose: The prevalence of sedentary lifestyles (SL), which includes both high volumes of extended sitting behavior and a low volume of steps accumulated across the day, among older adults continues to rise contributing to increases in associated comorbidities and the loss of independence. The social, personal, and economic burdens are enormous. In recognition of the health implications of SL, current public health physical activity guidelines now emphasize the complimentary goals of sitting less by moving more.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Medical Physics, Medical School, University of Crete, Heraklion, Greece. Electronic address:
Purpose: Surface Guided Radiation Treatment (SGRT) is a new method of positioning and monitoring patients on the linear accelerator's couch, using visual light cameras to monitor the skin's surface. The purpose of this study was to compare the SGRT with the conventional method, based on lasers and tattoos, in terms of accuracy and time expenditure, on patients with pelvic malignancies.
Materials And Methods: A group of 34 patients were enrolled in this study, 24 males who underwent radiotherapy prostate treatment and 10 females who underwent gynecological radiation therapy.
Biosens Bioelectron
December 2024
State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China. Electronic address:
Although electrochemical biosensors have been developed to detect multiple microRNAs (miRNAs) simultaneously through loading different capture probes, high surface-induced perturbation and competition among probes have reduced the detection sensitivity. To address these challenges, a trefoil DNA capture probe (TDCP) was designed for microRNA-21 (miR-21) and microRNA-16 (miR-16) detection simultaneously. The TDCP exhibits a stable structure, low spatial resistance, and integral rigidity, which decreases high surface-induced perturbations and competition to improve the accessibility of the target miRNA.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Technology, Anhui Agricultural University, Hefei, China.
Introduction: The rapid urbanization of rural regions, along with an aging population, has resulted in a substantial manpower scarcity for agricultural output, necessitating the urgent development of highly intelligent and accurate agricultural equipment technologies.
Methods: This research introduces YOLOv8-PSS, an enhanced lightweight obstacle detection model, to increase the effectiveness and safety of unmanned agricultural robots in intricate field situations. This YOLOv8-based model incorporates a depth camera to precisely identify and locate impediments in the way of autonomous agricultural equipment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!