Over the past few years, human-specific genes have received increasing attention as potential major contributors responsible for the 3-fold difference in brain size between human and chimpanzee. Accordingly, mutations affecting these genes may lead to a reduction in human brain size and therefore, may cause or contribute to microcephaly. In this review, we will concentrate, within the brain, on the cerebral cortex, the seat of our higher cognitive abilities, and focus on the human-specific gene and on the gene family comprising the three human-specific genes , , and . These genes are thought to have significantly contributed to the expansion of the cerebral cortex during human evolution. We will summarize the evolution of these genes, as well as their expression and functional role during human cortical development, and discuss their potential relevance for microcephaly. Furthermore, we will give an overview of other human-specific genes that are expressed during fetal human cortical development. We will discuss the potential involvement of these genes in microcephaly and how these genes could be studied functionally to identify a possible role in microcephaly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156310PMC
http://dx.doi.org/10.3390/cells10051209DOI Listing

Publication Analysis

Top Keywords

human-specific genes
16
genes
8
brain size
8
cerebral cortex
8
human cortical
8
cortical development
8
discuss potential
8
human-specific
5
microcephaly
5
human
5

Similar Publications

Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).

View Article and Find Full Text PDF

Schizophrenia is a frequent and disabling disease. The persistence of the disorder despite its harmful consequences represents an evolutionary paradox. Based on recent discoveries in genetics, scientists have formulated the "price-to-pay" hypothesis: schizophrenia would be intimately related to human evolution, particularly to brain development and human-specific higher cognitive functions.

View Article and Find Full Text PDF

A novel human specific lncRNA MEK6-AS1 regulates adipogenesis and fatty acid biosynthesis by stabilizing MEK6 mRNA.

J Biomed Sci

January 2025

Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.

Background: Obesity is becoming one of the major non-communicable diseases with increasing incidence and risks that cannot be ignored. However effective and safe clinical treatment strategies still need to be deeply explored. Increased number and volume of adipocytes lead to overweight and obesity.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) affects up to 1 in 59 children, and is one of the most common neurodevelopmental disorders. Recent genomic studies have highlighted the role of rare variants in ASD. This study aimed to identify genes affected by rare variants shared by siblings with ASD and validate the function of a candidate gene FRRS1L.

View Article and Find Full Text PDF
Article Synopsis
  • A new machine learning method, called SU-VAE, allows scientists to separate brain connectome data shared between humans and macaques from species-specific traits.
  • This method was validated by linking unique human features to cognitive abilities, while shared features aligned more with sensorimotor skills.
  • The results suggest that human-specific brain traits may make networks more efficient and are associated with certain genes related to axon guidance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!