This study examines the role played by individual characteristics and specific treatment methods in the evolution of hospitalized patients with coronavirus disease 2019 (COVID-19), through the lens of an observational study performed in a comparative approach between the first and second waves of coronavirus pandemic in Romania. The research endeavor is configured on a two-fold approach, including a detailed observation of the evolution of 274 hospitalized patients with COVID-19 (145 in the first wave and 129 in the second wave of infection) according to specific treatment methods applied and patients' individual features, as well as an econometric (quantitative) analysis through structural equation modeling and Gaussian graphical models designed to acknowledge the correlations and causal relationship between all considered coordinates. The main results highlight that the specific treatment methods applied had a positive influence on the evolution of COVID-19 patients, particularly in the second wave of coronavirus pandemic. In case of the first wave of COVID-19 infection, GGM results entail that there is a strong positive correlation between the evolution of the patients and the COVID-19 disease form, which is further positively correlated with the treatment scheme. The evolution of the patients is strongly and inversely correlated with the symptomatology and the ICU hospitalization. Moreover, the disease form is strongly and inversely correlated with oxygen saturation and the residence of patients (urban/rural). The symptomatology at first appearance also strongly depends on the age of the patients (positive correlation) and of the fact that the patient is a smoker or non-smoker and has other comorbidities. Age and gender are also important credentials that shape the disease degree and patient evolution in responding to treatment as well, our study attesting strong interconnections between these coordinates, the form of disease, symptomatology and overall evolution of the patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124435 | PMC |
http://dx.doi.org/10.3390/jcm10091958 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!