Three-dimensional printing (3DP) by fused deposition modeling (FDM) has gained momentum as a promising pharmaceutical manufacturing method due to encouraging forward-looking perspectives in personalized medicine preparation. The current challenges the technology has for applicability in the fabrication of solid dosage forms include the limited range of suitable pharmaceutical grade thermoplastic materials. Hence, it is important to investigate the implications of variable properties of the polymeric carrier on the preparation steps and the final output, as versatile products could be obtained by using the same material. In this study, we highlighted the influence of polyvinyl alcohol (PVA) particle size on the residence time of the mixtures in the extruder during the drug-loaded filament preparation step and the consequent impact on drug release from the 3D printed dosage form. We enhanced filament printability by exploiting the plasticizing potential of the active pharmaceutical ingredient (API) and we explored a channeled tablet model as a design strategy for dissolution facilitating purposes. Our findings disclosed a new perspective regarding material considerations for the preparation of PVA-based solid dosage forms by coupling hot melt extrusion (HME) and FDM-3DP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147252 | PMC |
http://dx.doi.org/10.3390/ph14050418 | DOI Listing |
J Sci Food Agric
January 2025
College of Food Science and Technology, Bohai University, Jinzhou, China.
Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CNR-IPCF, Institute for Chemical-Physical Processes Messina, 98158 Messina, Italy.
Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol-gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
Background: Recently, we reported that longer-term mixed nut intake significantly reduced serum total and low-density lipoprotein (LDL)-cholesterol, but these markers may not fully capture lipoprotein-related cardiovascular disease (CVD) risk.
Objectives: This randomized, controlled, single-blinded, crossover trial in older adults with overweight or obesity examined the effects of longer-term mixed nut consumption on lipoprotein particle size, number, and lipid distribution.
Methods: Twenty-eight participants (aged 65 ± 3 years; BMI 27.
Foods
January 2025
Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 320001, Israel.
Consumer sex influences phenotypic differences in digestive functions that may underlie variations in food disintegration. This study used an in vitro digestion model to test the hypothesis that emulsions follow distinct digestive pathways in men and women. Model emulsions were prepared using medium-chain triglycerides stabilized by beta-lactoglobulin, alpha-lactalbumin, or lactoferrin, and by three non-protein emulsifiers: Tween 80, lecithin, and sucrose esters.
View Article and Find Full Text PDFFoods
January 2025
Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
This study investigated the physicochemical and emulsifying properties of chickpea protein isolate (CPI)-citrus pectin (CP) conjugates formed via the Maillard reaction across varying reaction durations. CPI and CP were conjugated under controlled dry-heating conditions, and the resulting conjugates were characterized by measuring their particle size, zeta potential, solubility, thermal stability, surface hydrophobicity, and emulsifying properties. The results showed that as reaction duration increased, the particle size and zeta potential of the CPI-CP conjugates increased significantly, reaching a maximum particle size of 1311.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!