The complex roles of efferocytosis in cancer development, metastasis, and treatment.

Biomed Pharmacother

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Published: August 2021

When tumor cells are killed by targeted therapy, radiotherapy, or chemotherapy, they trigger their primary tumor by releasing pro-inflammatory cytokines. Microenvironmental interactions can also promote tumor heterogeneity and development. In this line, several immune cells within the tumor microenvironment, including macrophages, dendritic cells, regulatory T-cells, and CD8 and CD4 T cells, are involved in the clearance of apoptotic tumor cells through a process called efferocytosis. Although the efficiency of apoptotic tumor cell efferocytosis is positive under physiological conditions, there are controversies regarding its usefulness in treatment-induced apoptotic tumor cells (ATCs). Efferocytosis can show the limitation of cytotoxic treatments, such as chemotherapy and radiotherapy. Since cytotoxic treatments lead to extensive cell mortality, efferocytosis, and macrophage polarization toward an M2 phenotype, the immune response may get involved in tumor recurrence and metastasis. Tumor cells can use the anti-inflammatory effect of apoptotic tumor cell efferocytosis to induce an immunosuppressive condition that is tumor-tolerant. Since M2 polarization and efferocytosis are tumor-promoting processes, the receptors on macrophages act as potential targets for cancer therapy. Moreover, researchers have shown that efferocytosis-related molecules/pathways are potential targets for cancer therapy. These include phosphatidylserine and calreticulin, Tyro3, Axl, and Mer tyrosine kinase (MerTK), receptors of tyrosine kinase, indoleamine-2,3-dioxygenase 1, annexin V, CD47, TGF-β, IL-10, and macrophage phenotype switch are combined with conventional therapy, which can be more effective in cancer treatment. Thus, we set out to investigate the advantages and disadvantages of efferocytosis in treatment-induced apoptotic tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.111776DOI Listing

Publication Analysis

Top Keywords

tumor cells
20
apoptotic tumor
20
tumor
11
efferocytosis
8
cells
8
tumor cell
8
cell efferocytosis
8
treatment-induced apoptotic
8
cytotoxic treatments
8
potential targets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!