A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of the dual construct lowers rod strains in flexion-extension and lateral bending compared to two-rod and two-rod satellite constructs in a cadaveric spine corpectomy model. | LitMetric

AI Article Synopsis

  • Complex spinal reconstructions can lead to complications like pseudoarthrosis and rod failure, prompting the need for stronger support structures.
  • The Dual Construct method, which involves using four separate rods, aims to enhance stability and reduce the risk of rod fractures compared to traditional two-rod systems.
  • A biomechanical cadaver study evaluated the effectiveness of the Dual Construct against two standard rod configurations, measuring strain during movement to compare their performance.

Article Abstract

Background Context: Complex spinal reconstructions involving corpectomies, or osteotomies, place spinal implants at extremely high stresses that can lead to pseudoarthrosis and ultimately to rod failure, resulting in revision surgery. Current clinical options to increase the biomechanical strength of a construct include increasing rod diameter, changing rod material, or placing an additional satellite/outrigger rod on a standard two rod construct. Fundamentally, all of these constructs still rely on two longitudinal rods across the reconstruction site and are therefore at risk for rod fracture and loss of alignment. Initially described in 2006, the Dual Construct was developed to address this limitation by utilizing four distinct mechanically independent rods, which allowed for the creation of two separate, and distinct, constructs within each patient. Although there is early clinical evidence to support its efficacy, this is the first biomechanical study to compare the Dual Construct to the two-rod and two-rod with satellite configurations in a cadaveric study.

Purpose: To assess the biomechanical impact of the Dual Construct technique to traditional two-rod and two-rod with satellite rod construct in a cadaveric model.

Study Design/setting: Biomechanical cadaveric study METHODS: Nine fresh-frozen human cadaveric spines (6 males, 3 females, 56 year +/- 9 years) from T9-pelvis were instrumented and tested utilizing all three configurations including two-rod construct, two-rod with satellite construct, and the Dual Construct technique. Biomechanical testing order of the various constructs was randomized to reduce potential effects of order bias. Strain gauges were placed in both the coronal and sagittal planes of the rods to track the strains during flexion-extension and lateral bending while undergoing range of motion testing. Testing was performed using pure-moment flexibility testing protocols.

Results: In flexion-extension, the resultant strain in the two-rod construct was an average 600±228 microstrain, the two-rod with satellite rod strain averaged 603±237 microstrain, and the Dual Construct averaged 403±149 microstrain. In lateral bending, the resultant strain in the two-rod construct was an average of 266±134 microstrain, the satellite rod strain was an average of 310±158 microstrain, and the Dual Construct averaged 118±51 microstrain. In both flexion extension and lateral bending, a significant reduction in strain was observed between the Dual Construct condition compared to both the two-rod and satellite configurations. No significant difference was found between the two-rod and two-rod with satellite rod configurations.

Conclusions: The increase in load sharing significantly decreases the strain experienced across the Dual Construct compared to traditional two-rod and two-rod with satellite constructs. Global rod strains on primary rods cannot be reduced by simply increasing the number of satellite rods, but can only be reduce by increasing the actual number of primary rods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2021.05.022DOI Listing

Publication Analysis

Top Keywords

dual construct
36
two-rod satellite
32
two-rod two-rod
20
lateral bending
16
two-rod
16
satellite rod
16
construct
15
rod
12
two-rod construct
12
satellite
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!