Microglia and macrophages play important roles in ischemic brain injury. Changes in their M1/M2 polarization phenotypes significantly impact disease progression. The M2 microglia/macrophages are anti-inflammatory and have a protective effect against ischemic injury. The microRNA 24 (miR-24) promotes M2 macrophage polarization and suppresses inflammation. We tested the hypothesis that miR-24 is protective in ischemic brain injury by regulating microglia polarization. We treated rats with miR-24 inhibitor or mimic and subsequently subjected the rats to middle cerebral artery occlusion (MCAO) to induce ischemic brain injury. Neurological deficit and infarct volume were analyzed. Microglia and macrophages were assessed by fluorescence-activated cell sorting. Microglia polarization was determined by genes specific for M1 and M2 both in vivo and in BV-2 cells. The effect of miR-24 target Clcn3 on microglia polarization was examined. We found that miR-24 inhibition aggravated MCAO induced damage, while miR-24 overexpression alleviated brain injury by suppressing microglia/macrophage infiltration. miR-24 suppressed M1 and promoted M2 microglia polarization both in vivo and in vitro. Finally, we showed that miR-24 targeted Clcn3 to regulate microglia polarization. Our study indicates that miR-24 plays a neuroprotective role by promoting anti-proinflammatory microglia polarization during ischemic brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2021.135998DOI Listing

Publication Analysis

Top Keywords

microglia polarization
28
brain injury
20
ischemic brain
16
mir-24
10
microglia
9
polarization
9
regulating microglia
8
clcn3 microglia
8
microglia macrophages
8
protective ischemic
8

Similar Publications

Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.

View Article and Find Full Text PDF

Priming and release of cytokine IL-1β in microglial cells from the retina.

Exp Eye Res

January 2025

Department of Basic and Translational Science, Philadelphia, PA, 19104, United States; Department of Physiology, Philadelphia, PA, 19104, United States. Electronic address:

The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1 mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level.

View Article and Find Full Text PDF

Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.

J Biophotonics

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.

View Article and Find Full Text PDF

Engineering EVs-Mediated mRNA Delivery Regulates Microglia Function and Alleviates Depressive-Like Behaviors.

Adv Mater

January 2025

Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China.

The development of new non-neurotransmitter drugs is an important supplement to the clinical treatment of major depressive disorder. The latest development of mRNA therapy provides the possibility for the treatment of some major diseases. The endoplasmic reticulum (ER) and mitochondria constitute a highly interconnected set of fundamental organelles within cells.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Schisandrachinensis, a traditional functional Chinese medicine, is known for its ability to tonify the kidneys, calm the heart, and tranquilize the mind. Recent pharmacological research has demonstrated its anti-inflammatory and neuroprotective effects.

Aim Of The Study: We had previously demonstrated that Schisandra chinensis lignans (SCL) promote microglia polarization to M2 phenotype via targeting cannabinoid receptor type-2 (CB2R) to exert antidepressant effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!