Electroacupuncture inhibits the interaction between peripheral TRPV1 and P2X3 in rats with different pathological pain.

Physiol Res

Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.

Published: August 2021

Chronic pain is regarded to be one of the common and refractory diseases to cure in the clinic. One hundred Hz electroacupuncture (EA) is commonly used for inflammatory pain and 2 Hz for neuropathic pain possibly by modulating the transient receptor potential vanilloid subtype 1 (TRPV1) or the purinergic P2X3 related pathways. To clarify the mechanism of EA under various conditions of pathological pain, rats received a subcutaneous administration of complete Freund's adjuvant (CFA) for inflammatory pain and spared nerve injury (SNI) for neuropathic pain. The EA was performed at the bilateral ST36 and BL60 1 d after CFA or SNI being successfully established for 3 consecutive days. The mechanical hyperalgesia test was measured at baseline, 1 d after model establishment, 1 d and 3 d after EA. The co-expression changes, co-immunoprecipitation of TRPV1 and P2X3, and spontaneous pain behaviors (SPB) test were performed 3 d after EA stimulation. One hundred Hz EA or 2Hz EA stimulation could effectively down-regulate the hyperalgesia of CFA or SNI rats. The increased co-expression ratio between TRPV1 and P2X3 at the dorsal root ganglion (DRG) in two types of pain could be reduced by 100Hz or 2Hz EA intervention. While 100Hz or 2Hz EA was not able to eliminate the direct physical interaction between TRPV1 and P2X3. Moreover, EA could significantly inhibit the SPB induced by the co-activation of peripheral TRPV1 and P2X3. All results indicated that EA could significantly reduce the hyperalgesia and the SPB, which was partly related to inhibiting the co-expression and indirect interaction between peripheral TRPV1 and P2X3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820540PMC
http://dx.doi.org/10.33549/physiolres.934649DOI Listing

Publication Analysis

Top Keywords

trpv1 p2x3
24
peripheral trpv1
12
pain
9
interaction peripheral
8
pathological pain
8
inflammatory pain
8
neuropathic pain
8
cfa sni
8
100hz 2hz
8
trpv1
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!