Detonation nanodiamond (DND) is known to form aggregates that significantly reduce their unique nanoscale properties and require postprocessing to separate. How and when DND aggregates is an important question that has not been answered experimentally and could provide the foundation for approaches to limit aggregation. To answer this question, time-resolved small-angle X-ray scattering was performed during the detonation of high-explosives that are expected to condense particulates in the diamond, graphite, and liquid regions of the carbon phase diagram. DND aggregation into low fractal dimension structures could be observed as early as 0.1 μs, along with a separate scattering population also observed from an explosive that produces primarily graphitic products. A counterexample is the case of a high-explosive that produces nano-onions, where no hierarchical scattering was observed for at least 10 μs behind the detonation front. These results suggest that DND aggregation occurs on time scales comparable to particle formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c01209DOI Listing

Publication Analysis

Top Keywords

dnd aggregation
8
submicrosecond aggregation
4
detonation
4
aggregation detonation
4
detonation synthesis
4
synthesis nanodiamond
4
nanodiamond detonation
4
detonation nanodiamond
4
dnd
4
nanodiamond dnd
4

Similar Publications

Introduction: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia.

View Article and Find Full Text PDF

Point counts (PCs) are widely used in biodiversity surveys but, despite numerous advantages, simple PCs suffer from several problems: detectability, and therefore abundance, is unknown; systematic spatiotemporal variation in detectability yields biased inferences, and unknown survey area prevents formal density estimation and scaling-up to the landscape level. We introduce integrated distance sampling (IDS) models that combine distance sampling (DS) with simple PC or detection/nondetection (DND) data to capitalize on the strengths and mitigate the weaknesses of each data type. Key to IDS models is the view of simple PC and DND data as aggregations of latent DS surveys that observe the same underlying density process.

View Article and Find Full Text PDF

Interest in nanodiamond (ND) has been spurred by its unique properties such as high biocompatibility, versatile surface chemistry, and the possibility to apply it as drug delivery agent, cross-linker, or coating and for sensing applications when luminescent lattice defects such as the NV centers are present in the crystal lattice. Currently, nanodiamond has been used for targeted drug delivery, phototherapeutic applications, and sensing and imaging in cellular environments and in vitro. Furthermore, suitably functionalized nanodiamond is a promising material for tissue engineering applications.

View Article and Find Full Text PDF

Spinyhead Croaker Germ Cells Gene Visualizes Primordial Germ Cells in Medaka.

Life (Basel)

August 2022

Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.

Spinyhead croaker () is an economically important fish suffering from population decline caused by overfishing and habitat destruction. Researches on the development of primordial germ cell (PGC) and reproduction biology were an emergency for the long-term conservation of the involved species. () gene plays an indispensable role in PGC specification, maintenance, and development.

View Article and Find Full Text PDF

Nanocomposites with unusual and superior properties often contain well-dispersed nanoparticles. Polydimethylsiloxane, PDMS, offers a fluidlike or rubbery (when cross-linked) response, which complements the high-modulus nature of inorganic nanofillers. Systems using PDMS as the nanoparticulate, rather than the continuous, phase are rare because it is difficult to make PDMS nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!