Cytochrome nitrite reductases (CNIR or NrfA) play important roles in the global nitrogen cycle by conserving the usable nitrogen in the soil. Here, the electron storage and distribution properties within the pentaheme scaffold of NrfA were investigated via electron paramagnetic resonance (EPR) spectroscopy coupled with chemical titration experiments. Initially, a chemical reduction method was established to sequentially add electrons to the fully oxidized protein, 1 equiv at a time. The step-by-step reduction of the hemes was then followed using ultraviolet-visible absorption and EPR spectroscopy. EPR spectral simulations were used to elucidate the sequence of heme reduction within the pentaheme scaffold of NrfA and identify the signals of all five hemes in the EPR spectra. Electrochemical experiments ascertain the reduction potentials for each heme, observed in a narrow range from +10 mV (heme 5) to -226 mV (heme 3) (vs the standard hydrogen electrode). On the basis of quantitative analysis and simulation of the EPR data, we demonstrate that hemes 4 and 5 are reduced first (before the active site heme 1) and serve the purpose of an electron storage unit within the protein. To probe the role of the central heme 3, an H108M NrfA variant was generated where the reduction potential of heme 3 is shifted positively (from -226 to +48 mV). The H108M mutation significantly impacts the distribution of electrons within the pentaheme scaffold and the reduction potentials of the hemes, reducing the catalytic activity of the enzyme to 1% compared to that of the wild type. We propose that this is due to heme 3's important role as an electron gateway in the wild-type enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.0c00977 | DOI Listing |
J Inorg Biochem
July 2024
Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA. Electronic address:
Cytochrome c nitrite reductase, NrfA, is a soluble, periplasmic pentaheme cytochrome responsible for the reduction of nitrite to ammonium in the Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway, a vital reaction in the global nitrogen cycle. NrfA catalyzes this six-electron and eight-proton reduction of nitrite at a single active site with the help of its quinol oxidase partners. In this review, we summarize the latest progress in elucidating the reaction mechanism of ammonia production, including new findings about the active site architecture of NrfA, as well as recent results that elucidate electron transfer and storage in the pentaheme scaffold of this enzyme.
View Article and Find Full Text PDFBiochemistry
June 2021
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Cytochrome nitrite reductases (CNIR or NrfA) play important roles in the global nitrogen cycle by conserving the usable nitrogen in the soil. Here, the electron storage and distribution properties within the pentaheme scaffold of NrfA were investigated via electron paramagnetic resonance (EPR) spectroscopy coupled with chemical titration experiments. Initially, a chemical reduction method was established to sequentially add electrons to the fully oxidized protein, 1 equiv at a time.
View Article and Find Full Text PDFEscherichia coli is a versatile facultative anaerobe that can respire on a number of terminal electron acceptors, including oxygen, fumarate, nitrate, and S- and N-oxides. Anaerobic respiration using S- and N-oxides is accomplished by enzymatic reduction of these substrates by dimethyl sulfoxide reductase (DmsABC) and trimethylamine N-oxide reductase (TorCA). Both DmsABC and TorCA are membrane-associated redox enzymes that couple the oxidation of menaquinol to the reduction of S- and N-oxides in the periplasm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!