Impact of cocoa agricultural intensification on bird diversity and community composition.

Conserv Biol

Department of Biology and McCourt School of Public Policy, Georgetown University, Washington, DC, USA.

Published: February 2022

AI Article Synopsis

  • Cocoa agriculture is expanding to meet chocolate demand but poses a threat to biodiversity, particularly among bird species.
  • Studies indicate that bird diversity significantly declines in low shade cocoa farms, while farms with more canopy cover can maintain similar diversity levels as nearby forests, albeit with different bird communities.
  • The findings highlight the importance of conserving forests and promoting mixed-shade agroforestry to support diverse biological communities in cocoa-growing landscapes.

Article Abstract

To meet the growing demand for chocolate, cocoa (Theobroma cacao) agriculture is expanding and intensifying. Although this threatens tropical forests, cocoa sustainability initiatives largely overlook biodiversity conservation. To inform these initiatives, we analyzed how cocoa agriculture affects bird diversity at farm and landscape scales with a meta-analysis of 23 studies. We extracted 214 Hedges' g* comparisons of bird diversity and 14 comparisons of community similarity between a forest baseline and 4 farming systems that cover an intensification gradient in landscapes with high and low forest cover, and we summarized 119 correlations between cocoa farm features and bird diversity. Bird diversity declined sharply in low shade cocoa. Cocoa with >30% canopy cover from diverse trees retained bird diversity similar to nearby primary or mature secondary forest but held a different community of birds. Diversity of endemic species, frugivores, and insectivores (agriculture avoiders) declined, whereas diversity of habitat generalists, migrants, nectarivores, and granivores (agriculture associates) increased. As forest decreased on the landscape, the difference in bird community composition between forest and cocoa also decreased, indicating agriculture associates replaced agriculture avoiders in forest patches. Our results emphasize the need to conserve forested landscapes (land sparing) and invest in mixed-shade agroforestry (land sharing) because each strategy benefits a diverse and distinct biological community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290927PMC
http://dx.doi.org/10.1111/cobi.13779DOI Listing

Publication Analysis

Top Keywords

bird diversity
24
diversity
8
community composition
8
agriculture avoiders
8
agriculture associates
8
bird
7
cocoa
7
agriculture
6
forest
6
community
5

Similar Publications

A novel genotype of Babesia microti-like group in Ixodes montoyanus ticks parasitizing the Andean bear (Tremarctos ornatus) in Ecuador.

Exp Appl Acarol

January 2025

Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.

Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.

View Article and Find Full Text PDF

The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( ) neocortex, complemented by datasets from humans ( ), mice ( ), zebra finches ( ), turtles ( ), and lizards ( s), enabling comprehensive cross-species comparison.

View Article and Find Full Text PDF

This study aims to enhance our understanding of the temporal and spatial processes scales governing the evolutionary diversification of Neotropical birds with Trans- and Cis-Andean populations of the species from South and Central America. Through a multilocus analysis of the mitochondrial (CytB and ND2) and nuclear genes (I7BF, I5BF, and G3PDH) of 41 samples representing six subspecies, we describe the existing molecular lineages of , and estimate their demographic dynamics. We used Ecological Niche Modeling (ENM) with six different algorithms to predict the potential distribution of in both present-day and past scenarios, examining the overlap climatic niche between Cis- and Trans-Andean lineages.

View Article and Find Full Text PDF

Radio-tracking urban breeding birds: The importance of native vegetation.

Ecol Appl

January 2025

Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary.

As urban areas continue to expand globally, a deeper understanding of the functioning of urban green spaces is crucial for maintaining habitats that effectively support wildlife within our cities. Cities typically harbor a wide variety of nonnative vegetation, providing limited support for insect populations. The resulting scarcity of arthropods has been increasingly linked to adverse effects at higher trophic levels, such as the reduced reproductive success of insectivorous birds in urban environments.

View Article and Find Full Text PDF

Beyond the role of bats as natural host reservoirs of infectious agents, the impact of viral spillover from other animal species to bats has been neglected. Given the limited virus-host specificity of astroviruses (AstVs) and their propensity for cross-species transmission, we hypothesized that AstVs could be transmitted within animal communities (rodents, birds, and bats) and that native endemic bats may be exposed to viruses hosted by other species. We investigated the presence of AstV RNA in 3,796 biological samples collected in Reunion Island from ( = 3421), an endemic free-tailed bat species, and also from small terrestrial mammals and birds: ( = 146), ( = 74), ( = 36), ( = 99), and ( = 20).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!